
IBM
®

DB2 Universal Database
™

Application Development Guide:
Programming Client Applications

Version 8

SC09-4826-00

���

IBM
®

DB2 Universal Database
™

Application Development Guide:
Programming Client Applications

Version 8

SC09-4826-00

���

Before using this information and the product it supports, be sure to read the general information under Notices.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at
www.ibm.com/planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993-2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide

Contents

About This Book. xiii

Part 1. Introduction. 1

Chapter 1. Overview of Supported
Programming Interfaces 3
DB2 Developer’s Edition 3

DB2 Developer’s Edition Products 3
Instructions for Installing DB2 Developer’s
Edition Products 5

DB2 Universal Database Tools for Developing
Applications 5
Supported Programming Interfaces. 6

DB2 Supported Programming Interfaces . . 6
DB2 Application Programming Interfaces . 8
Embedded SQL 9
DB2 Call Level Interface 10
DB2 CLI versus Embedded Dynamic SQL 12
Java Database Connectivity (JDBC) . . . 14
Embedded SQL for Java (SQLj) 15
ActiveX Data Objects and Remote Data
Objects 16
Perl DBI 17
ODBC End-User Tools 17

Web Applications 17
Tools for Building Web Applications . . . 17
WebSphere Studio 18
XML Extender 19
MQSeries Enablement. 19
Net.Data 20

Programming Features 20
DB2 Programming Features 20
DB2 Stored Procedures 22
DB2 User-Defined Functions and Methods 22
Development Center 23
User-Defined Types (UDTs) and Large
Objects (LOBs) 24
OLE Automation Routines 26
OLE DB Table Functions 26
DB2 Triggers 27

Chapter 2. Coding a DB2 Application . . . 29
Prerequisites for Programming 30
DB2 Application Coding Overview 30

Programming a Standalone Application . . 30
Creating the Declaration Section of a
Standalone Application 31
Declaring Variables That Interact with the
Database Manager 32
Declaring Variables That Represent SQL
Objects 33
Declaring Host Variables with the
db2dclgn Declaration Generator 35
Relating Host Variables to an SQL
Statement 36
Declaring the SQLCA for Error Handling 37
Error Handling Using the WHENEVER
Statement 38
Adding Non-Executable Statements to an
Application 40
Connecting an Application to a Database 40
Coding Transactions 41
Ending a Transaction with the COMMIT
Statement 42
Ending a Transaction with the ROLLBACK
Statement 43
Ending an Application Program 44
Implicit Ending of a Transaction in a
Standalone Application 45
Application Pseudocode Framework . . . 45
Facilities for Prototyping SQL Statements 46
Administrative APIs in Embedded SQL or
DB2 CLI Programs 48
Definition of FIPS 127-2 and ISO/ANS
SQL92 48

Controlling Data Values and Relationships . . 48
Data Value Control. 49
Data Value Control Using Data Types . . 49
Data Value Control Using Unique
Constraints 49
Data Value Control Using Table Check
Constraints 50
Data Value Control Using Referential
Integrity Constraints 50
Data Value Control Using Views with
Check Option 51
Data Value Control Using Application
Logic and Program Variable Types . . . 51
Data Relationship Control 51

© Copyright IBM Corp. 1993-2002 iii

Data Relationship Control Using
Referential Integrity Constraints 52
Data Relationship Control Using Triggers 52
Data Relationship Control Using Before
Triggers 53
Data Relationship Control Using After
Triggers 53
Data Relationship Control Using
Application Logic 54
Application Logic at the Server 54

Authorization Considerations for SQL and
APIs 55

Authorization Considerations for
Embedded SQL 55
Authorization Considerations for Dynamic
SQL. 57
Authorization Considerations for Static
SQL. 58
Authorization Considerations for APIs . . 58

Testing the Application 59
Setting up the Test Environment for an
Application 59
Debugging and Optimizing an Application 63

IBM DB2 Universal Database Project Add-In
for Microsoft Visual C++ 64

The IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ 64
IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++
Terminology 66
Activating the IBM DB2 Universal
Database Project Add-In for Microsoft
Visual C++ 67
Activating the IBM DB2 Universal
Database Tools Add-In for Microsoft Visual
C++. 68

Part 2. Embedded SQL. 69

Chapter 3. Embedded SQL Overview . . . 71
Embedding SQL Statements in a Host
Language 71
Source File Creation and Preparation. . . . 73
Packages, Binding, and Embedded SQL . . . 76

Package Creation for Embedded SQL . . 76
Precompilation of Source Files Containing
Embedded SQL 78
Source File Requirements for Embedded
SQL Applications 80

Compilation and Linkage of Source Files
Containing Embedded SQL 81
Package Creation Using the BIND
Command 83
Package Versioning 83
Effect of Special Registers on Bound
Dynamic SQL 85
Resolution of Unqualified Table Names . . 85
Additional Considerations when Binding 86
Advantages of Deferred Binding 87
Bind File Contents 87
Application, Bind File, and Package
Relationships. 88
Precompiler-Generated Timestamps . . . 88
Package Rebinding. 90

Chapter 4. Writing Static SQL Programs. . 93
Characteristics and Reasons for Using Static
SQL. 93
Advantages of Static SQL 94
Example Static SQL Program 95
Data Retrieval in Static SQL Programs . . . 97
Host Variables in Static SQL Programs . . . 97

Host Variables in Static SQL 97
Declaring Host Variables in Static SQL
Programs 99
Referencing Host Variables in Static SQL
Programs 101

Indicator Variables in Static SQL Programs 101
Including Indicator Variables in Static
SQL Programs 101
Data Types for Indicator Variables in
Static SQL Programs 104
Example of an Indicator Variable in a
Static SQL Program 106

Selecting Multiple Rows Using a Cursor . . 108
Selecting Multiple Rows Using a Cursor 108
Declaring and Using Cursors in Static
SQL Programs 109
Cursor Types and Unit of Work
Considerations 110
Example of a Cursor in a Static SQL
Program 112

Manipulating Retrieved Data 113
Updating and Deleting Retrieved Data in
Static SQL Programs 114
Cursor Types 114
Example of a Fetch in a Static SQL
Program 115

iv Programming Client Applications

Scrolling Through and Manipulating
Retrieved Data 117

Scrolling Through Previously Retrieved
Data 117
Keeping a Copy of the Data 117
Retrieving Data a Second Time 118
Row Order Differences Between the First
and Second Result Table 119
Positioning a Cursor at the End of a Table 120
Updating Previously Retrieved Data . . 121
Example of an Insert, Update, and Delete
in a Static SQL Program. 121

Diagnostic Information 123
Return Codes 123
Error Information in the SQLCODE,
SQLSTATE, and SQLWARN Fields . . . 123
Token Truncation in the SQLCA Structure 124
Exception, Signal, and Interrupt Handler
Considerations 125
Exit List Routine Considerations 125
Error Message Retrieval in an Application 126

Chapter 5. Writing Dynamic SQL
Programs 127
Characteristics and Reasons for Using
Dynamic SQL 127

Reasons for Using Dynamic SQL. . . . 127
Dynamic SQL Support Statements . . . 128
Dynamic SQL Versus Static SQL 129

Cursors in Dynamic SQL Programs 131
Declaring and Using Cursors in Dynamic
SQL Programs 132
Example of a Cursor in a Dynamic SQL
Program 133

Effects of DYNAMICRULES on Dynamic
SQL 135
The SQLDA in Dynamic SQL Programs . . 137

Host Variables and the SQLDA in
Dynamic SQL Programs 137
Declaring the SQLDA Structure in a
Dynamic SQL Program 138
Preparing a Statement in Dynamic SQL
Using the Minimum SQLDA Structure . . 140
Allocating an SQLDA with Sufficient
SQLVAR Entries for a Dynamic SQL
Program 142
Describing a SELECT Statement in a
Dynamic SQL Program 143
Acquiring Storage to Hold a Row . . . 144

Processing the Cursor in a Dynamic SQL
Program 145
Allocating an SQLDA Structure for a
Dynamic SQL Program 145
Transferring Data in a Dynamic SQL
Program Using an SQLDA Structure . . 149
Processing Interactive SQL Statements in
Dynamic SQL Programs 150
Determination of Statement Type in
Dynamic SQL Programs 151
Processing Variable-List SELECT
Statements in Dynamic SQL Programs . . 151

Saving SQL Requests from End Users . . . 152
Parameter Markers in Dynamic SQL
Programs 153

Providing Variable Input to Dynamic SQL
Using Parameter Markers 153
Example of Parameter Markers in a
Dynamic SQL Program 154

DB2 Call Level Interface (CLI) Compared to
Dynamic SQL 155

DB2 Call Level Interface (CLI) versus
Embedded Dynamic SQL 155
Advantages of DB2 CLI over Embedded
SQL 157
When to Use DB2 CLI or Embedded SQL 159

Chapter 6. Programming in C and C++ 161
Programming Considerations for C/C++ . . 161
Trigraph Sequences for C and C++ 162
Input and Output Files for C and C++ . . . 162
Include Files 163

Include Files for C and C++ 163
Include Files in C and C++ 166

Embedded SQL Statements in C and C++ 167
Host Variables in C and C++ 168

Host Variables in C and C++ 169
Host Variable Names in C and C++. . . 170
Host Variable Declarations in C and C++ 171
Syntax for Numeric Host Variables in C
and C++ 172
Syntax for Fixed and Null-Terminated
Character Host Variables in C and C++ . 173
Syntax for Variable-Length Character
Host Variables in C or C++ 174
Indicator Variables in C and C++ . . . 176
Graphic Host Variables in C and C++ . . 176
Syntax for Graphic Declaration of
Single-Graphic and Null-Terminated
Graphic Forms in C and C++ 177

Contents v

Syntax for Graphic Declaration of
VARGRAPHIC Structured Form in C or
C++ 178
Syntax for Large Object (LOB) Host
Variables in C or C++ 179
Syntax for Large Object (LOB) Locator
Host Variables in C or C++ 182
Syntax for File Reference Host Variable
Declarations in C or C++ 183
Host Variable Initialization in C and C++ 183
C Macro Expansion 184
Host Structure Support in C and C++ . . 185
Indicator Tables in C and C++ 187
Null-Terminated Strings in C and C++ 188
Host Variables Used as Pointer Data
Types in C and C++ 190
Class Data Members Used as Host
Variables in C and C++ 191
Qualification and Member Operators in C
and C++ 192
Multi-Byte Character Encoding in C and
C++ 192
wchar_t and sqldbchar Data Types in C
and C++ 193
WCHARTYPE Precompiler Option in C
and C++ 194
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations in C and C++ . . 197
SQL Declare Section with Host Variables
for C and C++ 198

Data Type Considerations for C and C++ 200
Supported SQL Data Types in C and C++ 200
FOR BIT DATA in C and C++. 204
C and C++ Data Types for Procedures,
Functions, and Methods 204

SQLSTATE and SQLCODE Variables in C
and C++ 206

Chapter 7. Multiple-Thread Database
Access for C and C++ Applications . . . 207
Purpose of Multiple-Thread Database Access 207
Recommendations for Using Multiple
Threads 209
Code Page and Country/Region Code
Considerations for Multithreaded UNIX
Applications 209
Troubleshooting Multithreaded Applications 210

Potential Problems with Multiple Threads 210
Deadlock Prevention for Multiple
Contexts 210

Chapter 8. Programming in COBOL . . . 213
Programming Considerations for COBOL 213
Language Restrictions in COBOL 213
Multiple-Thread Database Access in COBOL 213
Input and Output Files for COBOL 214
Include Files for COBOL 214
Embedded SQL Statements in COBOL . . . 217
Host Variables in COBOL 219

Host Variables in COBOL 219
Host Variable Names in COBOL 220
Host Variable Declarations in COBOL . . 220
Syntax for Numeric Host Variables in
COBOL 221
Syntax for Fixed-Length Character Host
Variables in COBOL 222
Syntax for Fixed-Length Graphic Host
Variables in COBOL 224
Indicator Variables in COBOL. 225
Syntax for LOB Host Variables in COBOL 225
Syntax for LOB Locator Host Variables in
COBOL 226
Syntax for File Reference Host Variables
in COBOL 226
Host Structure Support in COBOL . . . 227
Indicator Tables in COBOL. 229
REDEFINES in COBOL Group Data Items 230
SQL Declare Section with Host Variables
for COBOL 231

Data Type Considerations for COBOL . . . 231
Supported SQL Data Types in COBOL 231
BINARY/COMP-4 COBOL Data Types 234
FOR BIT DATA in COBOL 235

SQLSTATE and SQLCODE Variables in
COBOL 235
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for COBOL 235
Object Oriented COBOL 236

Chapter 9. Programming in FORTRAN 237
Programming Considerations for FORTRAN 237
Language Restrictions in FORTRAN . . . 237

Call by Reference in FORTRAN 238
Debug and Comment Lines in FORTRAN 238
Precompilation Considerations for
FORTRAN 238
Multiple-Thread Database Access in
FORTRAN 238

Input and Output Files for FORTRAN . . . 238
Include Files 239

Include Files for FORTRAN 239

vi Programming Client Applications

Include Files in FORTRAN Applications 241
Embedded SQL Statements in FORTRAN 242
Host Variables in FORTRAN 244

Host Variables in FORTRAN 244
Host Variable Names in FORTRAN . . . 244
Host Variable Declarations in FORTRAN 245
Syntax for Numeric Host Variables in
FORTRAN 245
Syntax for Character Host Variables in
FORTRAN 246
Indicator Variables in FORTRAN. . . . 247
Syntax for Large Object (LOB) Host
Variables in FORTRAN 248
Syntax for Large Object (LOB) Locator
Host Variables in FORTRAN 249
Syntax for File Reference Host Variables
in FORTRAN 249
SQL Declare Section with Host Variables
for FORTRAN 250

Supported SQL Data Types in FORTRAN 251
Considerations for Multi-Byte Character Sets
in FORTRAN 252
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for FORTRAN . . . 252
SQLSTATE and SQLCODE Variables in
FORTRAN 253

Part 3. Java 255

Chapter 10. Programming in Java . . . 257
Programming Considerations for Java . . . 257
JDBC and SQLj 258

Comparison of SQLj to JDBC 258
JDBC and SQLj Interoperability 258
Session Sharing Between JDBC and SQLj 258

Advantages of Java over Other Languages 259
SQL Security in Java 259
Connection Resource Management in Java 260
Source and Output Files for Java. 261
Java Class Libraries 261
Where to Put Java Classes 261
Updating Java Classes for Runtime 263
Java Packages 263
Host Variables in Java 263
Supported SQL Data Types in Java 264
Java Enablement Components. 265
Application and Applet Support 266

Application Support in Java with the
Type 2 Driver 266

Application and Applet Support in Java
with the Type 4 Driver 266
Applet Support in Java Using the Type 3
Driver 267

JDBC Programming 268
Coding JDBC Applications and Applets 268
JDBC Specification 268
Example of a JDBC Program 269
Distribution of JDBC Applications Using
the Type 2 Driver 270
Distribution and Running of Type 4
Driver JDBC Applets. 271
Exceptions Caused by Mismatched
db2java.zip Files When Using the JDBC
Type 3 Driver 271
JDBC 2.1 272
JDBC 2.1 Core API Restrictions by the
DB2 JDBC Type 2 Driver 272
JDBC 2.1 Core API Restrictions by the
DB2 JDBC Type 4 Driver 273
JDBC 2.1 Optional Package API Support
by the DB2 JDBC Type 2 Driver 273
JDBC 2.1 Optional Package API Support
by the DB2 JDBC Type 4 Driver 275

SQLj Programming 275
SQLj Programming 275
DB2 Support for SQLj 276
DB2 Restrictions on SQLj 277
Embedded SQL Statements in Java . . . 278
Iterator Declarations and Behavior in
SQLj 279
Example of Iterators in an SQLj Program 280
Calls to Routines in SQLj 281
Example of Compiling and Running an
SQLj Program 282
SQLj Translator Options. 284

Troubleshooting Java Applications 285
Trace Facilities in Java 285
CLI/ODBC/JDBC Trace Facility 285
CLI and JDBC Trace Files 294
SQLSTATE and SQLCODE Values in Java 304

Chapter 11. Java Applications Using
WebSphere Application Servers 307
Web Services 307
Web Services Architecture 309
Accessing Data. 311

DB2 Data Access Through Web Services 311
DB2 Data Access Using XML-Based
Queries 311

Contents vii

DB2 Data Access Using SQL-Based
Queries 311
Document Access Definition Extension
File 312

Java 2 Platform Enterprise Edition 312
Java 2 Platform Enterprise Edition (J2EE)
Overview 313
Java 2 Platform Enterprise Edition . . . 313
Java 2 Platform Enterprise Edition
Containers 314
Java 2 Platform Enterprise Edition Server 315
Java 2 Enterprise Edition Database
Requirements 315
Java Naming and Directory Interface
(JNDI) 315
Java Transaction Management. 316
Enterprise Java Beans 317

WebSphere 319
Connections to Enterprise Data 319
WebSphere Connection Pooling and Data
Sources 320
Parameters for Tuning WebSphere
Connection Pools 321
Benefits of WebSphere Connection
Pooling 325
Statement Caching in WebSphere . . . 326

Part 4. Other Programming
Interfaces 327

Chapter 12. Programming in Perl 329
Programming Considerations for Perl . . . 329
Perl Restrictions 329
Multiple-Thread Database Access in Perl . . 329
Database Connections in Perl 330
Fetching Results in Perl 330
Parameter Markers in Perl 331
SQLSTATE and SQLCODE Variables in Perl 331
Example of a Perl Program 332

Chapter 13. Programming in REXX . . . 333
Programming Considerations for REXX . . 333
Language Restrictions for REXX 334

Language Restrictions for REXX 334
Registering SQLEXEC, SQLDBS and
SQLDB2 in REXX 334
Multiple-Thread Database Access in
REXX 335

Japanese or Traditional Chinese EUC
Considerations for REXX 336

Embedded SQL in REXX Applications . . . 336
Host Variables in REXX 338

Host Variables in REXX 338
Host Variable Names in REXX 339
Host Variable References in REXX . . . 339
Indicator Variables in REXX 339
Predefined REXX Variables. 339
LOB Host Variables in REXX 341
Syntax for LOB Locator Declarations in
REXX 342
Syntax for LOB File Reference
Declarations in REXX 343
LOB Host Variable Clearing in REXX . . 344
Cursors in REXX 344

Supported SQL Data Types in REXX . . . 345
Execution Requirements for REXX 347

Building and Running REXX Applications 347
Bind Files for REXX 348

API Syntax for REXX 349
Calling Stored Procedures from REXX . . . 350

Stored Procedures in REXX 350
Stored Procedure Calls in REXX 351
Client Considerations for Calling Stored
Procedures in REXX 352
Server Considerations for Calling Stored
Procedures in REXX 352
Retrieval of Precision and SCALE Values
from SQLDA Decimal Fields 353

Chapter 14. Writing Applications Using
the IBM OLE DB Provider for DB2 Servers 355
Purpose of the IBM OLE DB Provider for
DB2 355
Application Types Supported by the IBM
OLE DB Provider for DB2 357
OLE DB Services 357

Thread Model Supported by IBM OLE DB
Provider 357
Large Object Manipulation with the IBM
OLE DB Provider 357
Schema Rowsets Supported by the IBM
OLE DB Provider 357
OLE DB Services Automatically Enabled
by IBM OLE DB Provider 359

Data Services 360
Supported Cursor Modes for the IBM
OLE DB Provider 360

viii Programming Client Applications

Data Type Mappings between DB2 and
OLE DB 360
Data Conversion for Setting Data from
OLE DB Types to DB2 Types 362
Data Conversion for Setting Data from
DB2 Types to OLE DB Types 364

IBM OLE DB Provider Restrictions 366
IBM OLE DB Provider Support for OLE DB
Components and Interfaces 366
IBM OLE DB Provider Support for OLE DB
Properties 369
Connections to Data Sources Using IBM OLE
DB Provider 372
ADO Applications 373

ADO Connection String Keywords . . . 373
Connections to Data Sources with Visual
Basic ADO Applications 373
Updatable Scrollable Cursors in ADO
Applications 374
Limitations for ADO Applications . . . 374
IBM OLE DB Provider Support for ADO
Methods and Properties. 374

C and C++ Applications 378
Compilation and Linking of C/C++
Applications and the IBM OLE DB
Provider 378
Connections to Data Sources in C/C++
Applications using the IBM OLE DB
Provider 379
Updatable Scrollable Cursors in ATL
Applications and the IBM OLE DB
Provider 379

MTS and COM+ Distributed Transactions 379
MTS and COM+ Distributed Transaction
Support and the IBM OLE DB Provider . 380
Enablement of MTS Support in DB2
Universal Database for C/C++
Applications 380

Part 5. General DB2 Application
Concepts 381

Chapter 15. National Language Support 383
Collating Sequence Overview 383

Collating Sequences 383
Character Comparisons Based on
Collating Sequences 385
Case Independent Comparisons Using the
TRANSLATE Function 386

Differences Between EBCDIC and ASCII
Collating Sequence Sort Orders 387
Collating Sequence Specified when
Database Is Created 388
Sample Collating Sequences 390

Code Pages and Locales 391
Derivation of Code Page Values 391
Derivation of Locales in Application
Programs 391
How DB2 Derives Locales 392

Application Considerations 392
National Language Support and
Application Development Considerations . 393
National Language Support and SQL
Statements 394
Remote Stored Procedures and UDFs . . 395
Package Name Considerations in Mixed
Code Page Environments 396
Active Code Page for Precompilation and
Binding 396
Active Code Page for Application
Execution 397
Character Conversion Between Different
Code Pages 397
When Code Page Conversion Occurs . . 397
Character Substitutions During Code
Page Conversions 398
Supported Code Page Conversions . . . 399
Code Page Conversion Expansion Factor 400

DBCS Character Sets 401
Extended UNIX Code (EUC) Character Sets 402
CLI, ODBC, JDBC, and SQLj Programs in a
DBCS Environment 403
Considerations for Japanese and Traditional
Chinese EUC and UCS-2 Code Sets 404

Japanese and Traditional Chinese EUC
and UCS-2 Code Set Considerations . . 404
Mixed EUC and Double-Byte Client and
Database Considerations 405
Character Conversion Considerations for
Traditional Chinese Users 406
Graphic Data in Japanese or Traditional
Chinese EUC Applications 406
Application Development in Unequal
Code Page Situations 408
Client-Based Parameter Validation in a
Mixed Code Set Environment 412
DESCRIBE Statement in Mixed Code Set
Environments 413

Contents ix

Fixed-Length and Variable-Length Data in
Mixed Code Set Environments 414
Code Page Conversion String-Length
Overflow in Mixed Code Set
Environments 415
Applications Connected to Unicode
Databases 417

Chapter 16. Managing Transactions . . . 419
Remote Unit of Work 419
Multisite Update Considerations 419

Multisite Update 419
When to Use Multisite Update 420
SQL Statements in Multisite Update
Applications 421
Precompilation of Multisite Update
Applications 423
Configuration Parameter Considerations
for Multisite Update Applications . . . 424

Accessing Host, AS/400, or iSeries Servers 426
Concurrent Transactions 426

Concurrent Transactions 426
Potential Problems with Concurrent
Transactions 427
Deadlock Prevention for Concurrent
Transactions 428

X/Open XA Interface Programming
Considerations 429
Application Linkage and the X/Open XA
Interface 433

Chapter 17. Programming Considerations
for Partitioned Database Environments . 435
FOR READ ONLY Cursors in a Partitioned
Database Environment 435
Directed DSS and Local Bypass 435

Directed DSS and Local Bypass in
Partitioned Database Environments . . . 435
Directed DSS in Partitioned Database
Environments 436
Local Bypass in Partitioned Database
Environments 437

Buffered Inserts 437
Buffered Inserts in Partitioned Database
Environments 437
Considerations for Using Buffered Inserts 440
Restrictions on Using Buffered Inserts . . 443

Example of Extracting a Large Volume of
Data in a Partitioned Database Environment . 443

Creating a Simulated Partitioned Database
Environment 449
Troubleshooting 449

Error-Handling Considerations in
Partitioned Database Environments . . . 450
Severe Errors in Partitioned Database
Environments 450
Merged Multiple SQLCA Structures. . . 451
Partition That Returns the Error 452
Looping or Suspended Applications . . 452

Chapter 18. Common DB2 Application
Techniques 455
Generated Columns 455
Identity Columns 456
Sequential Values and Sequence Objects . . 457

Generation of Sequential Values 457
Management of Sequence Behavior . . . 459
Application Performance and Sequence
Objects 460
Sequence Objects Compared to Identity
Columns 461

Declared Temporary Tables and Application
Performance 461
Savepoints and Transactions 464

Transaction Management with Savepoints 464
Application Savepoints Compared to
Compound SQL Blocks 466
SQL Statements for Creating and
Controlling Savepoints 468
Restrictions on Savepoint Usage 468
Savepoints and Data Definition Language
(DDL). 469
Savepoints and Buffered Inserts 470
Savepoints and Cursor Blocking 470
Savepoints and XA-Compliant
Transaction Managers 471

Transmission of Large Volumes of Data
Across a Network. 471

Part 6. Appendixes 473

Appendix A. Supported SQL Statements 475

Appendix B. Programming in a Host or
iSeries Environment 481
Applications in Host or iSeries Environments 481
Data Definition Language in Host and
iSeries Environments. 482

x Programming Client Applications

Data Manipulation Language in Host and
iSeries Environments. 483
Data Control Language in Host and iSeries
Environments 484
Database Connection Management with DB2
Connect 484
Processing of Interrupt Requests 485
Package Attributes, PREP, and BIND . . . 485

Package Attribute Differences among IBM
Relational Database Systems 485
CNULREQD BIND Option for C
Null-Terminated Strings. 486
Standalone SQLCODE and SQLSTATE
Variables 487
Isolation Levels Supported by DB2
Connect 487

User-Defined Sort Orders 488
Referential Integrity Differences among IBM
Relational Database Systems 488
Locking and Application Portability. . . . 489
SQLCODE and SQLSTATE Differences
among IBM Relational Database Systems . . 489
System Catalog Differences among IBM
Relational Database Systems 490
Numeric Conversion Overflows on Retrieval
Assignments 490
Stored Procedures in Host or iSeries
Environments 490
DB2 Connect Support for Compound SQL 492
Multisite Update with DB2 Connect. . . . 492
Host and iSeries Server SQL Statements
Supported by DB2 Connect 493
Host and iSeries Server SQL Statements
Rejected by DB2 Connect 494

Appendix C. Simulation of EBCDIC Binary
Collation 495

Index 501

DB2 Universal Database technical
information 521
Overview of DB2 Universal Database
technical information 521

Categories of DB2 technical information 521
Printing DB2 books from PDF files 529
Ordering printed DB2 books 530
Accessing online help 530
Finding topics by accessing the DB2
Information Center from a browser 532
Finding product information by accessing
the DB2 Information Center from the
administration tools 534
Viewing technical documentation online
directly from the DB2 HTML Documentation
CD. 535
Updating the HTML documentation installed
on your machine 536
Copying files from the DB2 HTML
Documentation CD to a Web Server. . . . 538
Troubleshooting DB2 documentation search
with Netscape 4.x 538
Searching the DB2 documentation 539
Online DB2 troubleshooting information . . 540
Accessibility 541

Keyboard Input and Navigation 541
Accessible Display 542
Alternative Alert Cues 542
Compatibility with Assistive Technologies 542
Accessible Documentation 542

DB2 tutorials 542
DB2 Information Center for topics 543

Notices 545
Trademarks 548

Contents xi

xii Programming Client Applications

About This Book

The Application Development Guide is a three-volume book that describes what
you need to know about coding, debugging, building, and running DB2
applications:
v Application Development Guide: Programming Client Applications contains what

you need to know to code standalone DB2 applications that run on DB2
clients. It includes information on:
– Programming interfaces that are supported by DB2. High-level

descriptions are provided for DB2 Developer’s Edition, supported
programming interfaces, facilities for creating Web applications, and
DB2-provided programming features, such as routines and triggers.

– The general structure that a DB2 application should follow.
Recommendations are provided on how to maintain data values and
relationships in the database, authorization considerations are described,
and information is provided on how to test and debug your application.

– Embedded SQL, both dynamic and static. The general considerations for
embedded SQL are described, as well as the specific issues that apply to
the usage of static and dynamic SQL in DB2 applications.

– Supported host and interpreted languages, such as C/C++, COBOL, Perl,
and REXX, and how to use embedded SQL in applications that are
written in these languages.

– Java (both JDBC and SQLj), and considerations for building Java
applications that use WebSphere Application Servers.

– The IBM OLE DB Provider for DB2 Servers. General information is
provided about IBM OLE DB Provider support for OLE DB services,
components, and properties. Specific information is also provided about
Visual Basic and Visual C++ applications that use the OLE DB interface
for ActiveX Data Objects (ADO).

– National language support issues. General topics, such as collating
sequences, the derivation of code pages and locales, and character
conversions are described. More specific issues such as DBCS code
pages, EUC character sets, and issues that apply in Japanese and
Traditional Chinese EUC and UCS-2 environments are also described.

– Transaction management. Issues that apply to applications that perform
multisite updates, and to applications that perform concurrent
transactions, are described.

– Applications in partitioned database environments. Directed DSS, local
bypass, buffered inserts, and troubleshooting applications in partitioned
database environments are described.

© Copyright IBM Corp. 1993-2002 xiii

– Commonly used application techniques. Information is provided on how
to use generated and identity columns, declared temporary tables, and
how to use savepoints to manage transactions.

– The SQL statements that are supported for use in embedded SQL
applications.

– Applications that access host and iSeries environments. The issues that
pertain to embedded SQL applications that access host and iSeries
envirionments are described.

– The simulation of EBCDIC binary collation.
v Application Development Guide: Programming Server Applications contains what

you need to know for server-side programming including routines, large
objects, user-defined types, and triggers. It includes information on:
– Routines (stored procedures, user-defined functions, and methods),

including:
- Routine performance, security, library management considerations, and

restrictions.
- Registering and writing routines, including the CREATE statements

and debugging.
- Procedure parameter modes and parameter handling.
- Procedure result sets.
- UDF features including scratchpads and scalar and table functions.
- SQL procedures including debugging, and condition handling.
- Parameter styles, authorizations, and binding of external routines.
- Language-specific considerations for C, Java, and OLE automation

routines.
- Invoking routines
- Function selection and passing distinct types and LOBs to functions.
- Code pages and routines.

– Large objects, including LOB usage and locators, reference variables, and
CLOB data.

– User-defined distinct types, including strong typing, defining and
dropping UDTs, creating tables with structured types, using distinct
types and typed tables for specific applications, manipulating distinct
types and casting between them, and performing comparisons and
assignments with distinct types, including UNION operations on
distinctly typed columns.

– User-defined structured types, including storing instances and
instantiation, structured type hierarchies, defining structured type
behavior, the dynamic dispatch of methods, the comparison, casting, and
constructor functions, and mutator and observer methods for structured
types.

xiv Programming Client Applications

– Typed tables, including creating, dropping, substituting, storing objects,
defining system-generated object identifiers, and constraints on object
identifier columns.

– Reference types, including relationships between objects in typed tables,
semantic relationships with references, and referential integrity versus
scoped references.

– Typed tables and typed views, including structured types as column
types, transform functions and transform groups, host language program
mappings, and structured type host variables.

– Triggers, including INSERT, UPDATE, and DELETE triggers, interactions
with referential constraints, creation guidelines, granularity, activation
time, transition variables and tables, triggered actions, multiple triggers,
and synergy between triggers, constraints, and routines.

v Application Development Guide: Building and Running Applications contains
what you need to know to build and run DB2 applications on the operating
systems supported by DB2:
– AIX
– HP-UX
– Linux
– Solaris
– Windows

It includes information on:
– How to set up your application development environment, including

specific instructions for Java and SQL procedures, how to set up the
sample database, and how to migrate your applications from previous
versions of DB2.

– DB2 supported servers and software to build applications, including
supported compilers and interpreters.

– The DB2 sample program files, makefiles, build files, and error-checking
utility files.

– How to build and run Java applets, applications, and routines.
– How to build and run SQL procedures.
– How to build and run C/C++ applications and routines.
– How to build and run IBM and Micro Focus COBOL applications and

routines.
– How to build and run REXX applications on AIX and Windows.
– How to build and run applications with ActiveX Data Objects (ADO)

using Visual Basic and Visual C++ on Windows.
– How to build and run applications with remote data objects using Visual

C++ on Windows.

About This Book xv

xvi Programming Client Applications

Part 1. Introduction

© Copyright IBM Corp. 1993-2002 1

2 Programming Client Applications

Chapter 1. Overview of Supported Programming Interfaces

DB2 Developer’s Edition 3
DB2 Developer’s Edition Products 3
Instructions for Installing DB2 Developer’s
Edition Products 5

DB2 Universal Database Tools for Developing
Applications 5
Supported Programming Interfaces. 6

DB2 Supported Programming Interfaces . . 6
DB2 Application Programming Interfaces . 8
Embedded SQL 9
DB2 Call Level Interface 10
DB2 CLI versus Embedded Dynamic SQL 12
Java Database Connectivity (JDBC) . . . 14
Embedded SQL for Java (SQLj) 15
ActiveX Data Objects and Remote Data
Objects 16
Perl DBI 17

ODBC End-User Tools 17
Web Applications 17

Tools for Building Web Applications . . . 17
WebSphere Studio 18
XML Extender 19
MQSeries Enablement. 19
Net.Data 20

Programming Features 20
DB2 Programming Features 20
DB2 Stored Procedures 22
DB2 User-Defined Functions and Methods 22
Development Center 23
User-Defined Types (UDTs) and Large
Objects (LOBs) 24
OLE Automation Routines 26
OLE DB Table Functions 26
DB2 Triggers 27

DB2 Developer’s Edition

The sections that follow describe the DB2 Developer’s Edition, and where to
find information about installing products in it.

DB2 Developer’s Edition Products

DB2® Universal Database provides two product packages for application
development: DB2 Personal Developer’s Edition and DB2 Universal
Developer’s Edition. The Personal Developer’s Edition provides the DB2
Universal Database™ and DB2 Connect™ Personal Edition products that run
on Linux and Windows® operating systems. The DB2 Universal Developer’s
Edition provides DB2 products on these platforms as well as on AIX, HP-UX,
and the Solaris Operating Environment. Contact your IBM representative for a
full list of supported platforms.

Using the software that comes with these products, you can develop and test
applications that run on one operating system and access databases on the
same or on a different operating system. For example, you can create an
application that runs on the Windows NT® operating system but accesses a
database on a UNIX® platform such as AIX. See your License Agreement for
the terms and conditions of use for the Developer’s Edition products.

The Personal Developer’s Edition contains several CD-ROMs with all the
code that you need to develop and test your applications. In each box, you
will find:

© Copyright IBM Corp. 1993-2002 3

v The DB2 Universal Database product CD-ROMs for Linux and Windows
operating systems. Each CD-ROM contains the DB2 server, Administration
Client, Application Development Client, and Run-Time Client for a
supported operating system. These CD-ROMs are provided to you for
testing your applications only. If you need to install and use a database,
you have to get a valid license by purchasing the Universal Database
product.

v DB2 Connect Personal Edition
v A DB2 publications CD-ROM containing DB2 books in PDF format
v DB2 Extenders™ (Windows only)
v DB2 XML Extender (Windows only)
v VisualAge® for Java, Entry Edition

The Universal Developer’s Edition contains CD-ROMs for all the operating
systems supported by DB2, and include the following:
v DB2 Universal Database Personal Edition, Workgroup Server Edition, and

Enterprise Server Edition
v DB2 Connect Personal Edition and DB2 Connect Enterprise Edition
v Administration clients for all platforms. These clients contain tools for

administering databases, such as the Control Center and the Event
Analyzer. These clients also allow you to run applications on any system.

v Application development clients for all platforms. These clients have
application development tools, sample programs, and header files. Each
DB2 AD client includes everything you need to develop your applications.

v Run-time clients for all platforms. An application can be run from a
run-time client on any system. The run-time client does not have some of
the features of the administration client, such as the DB2 Control Center
and Event Analyzer, and so takes up less space.

v DB2 Extenders
v DB2 XML Extender
v VisualAge for Java, Professional Edition (Windows)
v Websphere Studio
v Websphere Application Server, Standard Edition
v Query Management Facility (try and buy)

In addition, for both Developer’s Editions you get copies of other software
that you may find useful for developing applications. This software may vary
from time to time, and is accompanied by license agreements for use.

4 Programming Client Applications

Instructions for Installing DB2 Developer’s Edition Products
For instructions on how to install a product that is available with DB2
Developer’s Edition, either refer to the appropriate Quick Beginnings book,
which is available from the PDF CD, or check the product CD itself for
installation instructions.

DB2 Universal Database Tools for Developing Applications

You can use a variety of different tools when developing your applications.
DB2® Universal Database supplies the following tools to help you write and
test the SQL statements in your applications, and to help you monitor their
performance.

Note: Not all tools are available on every platform.

Control Center

A graphical interface that displays database objects (such as databases, tables,
and packages) and their relationship to each other. Use the Control Center to
perform administrative tasks such as configuring the system, managing
directories, backing up and recovering the system, scheduling jobs, and
managing media.

DB2 also provides the following facilities:

Command Center
Is used to enter DB2 commands and SQL statements in an interactive
window, and to see the execution result in a result window. You can
scroll through the results and save the output to a file.

Script Center
Is used to create scripts, which you can store and invoke at a later
time. These scripts can contain DB2 commands, SQL statements, or
operating system commands. You can schedule scripts to run
unattended. You can run these jobs once or you can set them up to
run on a repeating schedule. A repeating schedule is particularly
useful for tasks like backups.

Journal
Is used to view the following types of information: all available
information about jobs that are pending execution, executing, or that
have completed execution; the recovery history log; the alerts log; and
the messages log. You can also use the Journal to review the results of
jobs that run unattended.

Chapter 1. Overview of Supported Programming Interfaces 5

Alert Center
Is used to monitor your system for early warnings of potential
problems, or to automate actions to correct problems.

Tools Setting
Is used to change the settings for the Control Center, Alert Center, and
Replication.

Event Monitor
Collects performance information on database activities over a period
of time. Its collected information provides a good summary of the
activity for a particular database event: for example, a database
connection or an SQL statement.

Visual Explain

An installable option for the Control Center, Visual Explain is a graphical
interface that enables you to analyze and tune SQL statements, including
viewing access plans chosen by the optimizer for SQL statements.

Supported Programming Interfaces

The sections that follow provide an overview of the supported programming
interfaces.

DB2 Supported Programming Interfaces

You can use several different programming interfaces to manage or access
DB2® databases. You can:
v Use DB2 APIs to perform administrative functions such as backing up and

restoring databases.
v Embed static and dynamic SQL statements in your applications.
v Code DB2 Call Level Interface (DB2 CLI) function calls in your applications

to invoke dynamic SQL statements.
v Develop Java™ applications and applets that call the Java Database

Connectivity application programming interface (JDBC API).
v Develop Microsoft® Visual Basic and Visual C++ applications that conform

to Data Access Object (DAO) and Remote Data Object (RDO) specifications,
and ActiveX Data Object (ADO) applications that use the Object Linking
and Embedding Database (OLE DB) Bridge.

v Develop applications using IBM® or third-party tools such as Net.Data,
Excel, Perl, and Open Database Connectivity (ODBC) end-user tools such as
Lotus® Approach, and its programming language, LotusScript.

The way your application accesses DB2 databases will depend on the type of
application you want to develop. For example, if you want a data entry

6 Programming Client Applications

application, you might choose to embed static SQL statements in your
application. If you want an application that performs queries over the World
Wide Web, you might choose Net.Data, Perl, or Java.

Apart from how the application accesses data, you also need to consider the
following:
v Controlling data values using:

– Data types (built-in or user-defined)
– Table check constraints
– Referential integrity constraints
– Views using the CHECK OPTION
– Application logic and variable types

v Controlling the relationship between data values using:
– Referential integrity constraints
– Triggers
– Application logic

v Executing programs at the server using:
– Stored procedures
– User-defined functions
– Triggers

You will notice that this list mentions some capabilities more than once, such
as triggers. This reflects the flexibility of these capabilities to address more
than one design criteria.

Your first and most fundamental decision is whether or not to move the logic
to enforce application related rules about the data into the database.

The key advantage in transferring logic focused on the data from the
application into the database is that your application becomes more
independent of the data. The logic surrounding your data is centralized in one
place, the database. This means that you can change data or data logic once
and affect all applications immediately.

This latter advantage is very powerful, but you must also consider that any
data logic put into the database affects all users of the data equally. You must
consider whether the rules and constraints that you wish to impose on the
data apply to all users of the data or just the users of your application.

Your application requirements may also affect whether to enforce rules at the
database or the application. For example, you may need to process validation

Chapter 1. Overview of Supported Programming Interfaces 7

errors on data entry in a specific order. In general, you should do these types
of data validation in the application code.

You should also consider the computing environment where the application is
used. You need to consider the difference between performing logic on the
client machines against running the logic on the usually more powerful
database server machines using either stored procedures, UDFs, or a
combination of both.

In some cases, the correct answer is to include the enforcement in both the
application (perhaps due to application specific requirements) and in the
database (perhaps due to other interactive uses outside the application).

Related concepts:

v “DB2 Call Level Interface (CLI) versus Embedded Dynamic SQL” on page
155

v “Embedded SQL” on page 9
v “DB2 Call Level Interface” on page 10
v “DB2 Application Programming Interfaces” on page 8
v “ActiveX Data Objects and Remote Data Objects” on page 16
v “Perl DBI” on page 17
v “ODBC End-User Tools” on page 17
v “Tools for Building Web Applications” on page 17
v “Java Database Connectivity (JDBC)” on page 14

DB2 Application Programming Interfaces

Your applications may need to perform some database administration tasks,
such as creating, activating, backing up, or restoring a database. DB2®

provides numerous APIs so you can perform these tasks from your
applications, including embedded SQL and DB2 CLI applications. This enables
you to program the same administrative functions into your applications that
you can perform using the DB2 server administration tools available in the
Control Center.

Additionally, you might need to perform specific tasks that can only be
performed using the DB2 APIs. For example, you might want to retrieve the
text of an error message so your application can display it to the end user. To
retrieve the message, you must use the Get Error Message API.

Related concepts:

v “Authorization Considerations for APIs” on page 58
v “Administrative APIs in Embedded SQL or DB2 CLI Programs” on page 48

8 Programming Client Applications

Embedded SQL

Structured Query Language (SQL) is the database interface language used to
access and manipulate data in DB2® databases. You can embed SQL
statements in your applications, enabling them to perform any task supported
by SQL, such as retrieving or storing data. Using DB2, you can code your
embedded SQL applications in the C/C++, COBOL, FORTRAN, Java™ (SQLj),
and REXX programming languages.

Note: The REXX and Fortran programming languages have not been
enhanced since Version 5 of DB2 Universal Database.

An application in which you embed SQL statements is called a host program.
The programming language you use to create a host program is called a host
language. The program and language are defined this way because they host
or accommodate SQL statements.

For static SQL statements, you know before compile time the SQL statement
type and the table and column names. The only unknowns are specific data
values the statement is searching for or updating. You can represent those
values in host language variables. You precompile, bind and then compile
static SQL statements before you run your application. Static SQL is best run
on databases whose statistics do not change a great deal. Otherwise, the
statements will soon get out of date.

In contrast, dynamic SQL statements are those that your application builds
and executes at run time. An interactive application that prompts the end user
for key parts of an SQL statement, such as the names of the tables and
columns to be searched, is a good example of dynamic SQL. The application
builds the SQL statement while it’s running, and then submits the statement
for processing.

You can write applications that have static SQL statements, dynamic SQL
statements, or a mix of both.

Generally, static SQL statements are well-suited for high-performance
applications with predefined transactions. A reservation system is a good
example of such an application.

Generally, dynamic SQL statements are well-suited for applications that run
against a rapidly changing database where transactions need to be specified at
run time. An interactive query interface is a good example of such an
application.

When you embed SQL statements in your application, you must precompile
and bind your application to a database with the following steps:

Chapter 1. Overview of Supported Programming Interfaces 9

1. Create source files that contain programs with embedded SQL statements.
2. Connect to a database, then precompile each source file.

The precompiler converts the SQL statements in each source file into DB2
run-time API calls to the database manager. The precompiler also produces
an access package in the database and, optionally, a bind file, if you
specify that you want one created.
The access package contains access plans selected by the DB2 optimizer for
the static SQL statements in your application. The access plans contain the
information required by the database manager to execute the static SQL
statements in the most efficient manner as determined by the optimizer.
For dynamic SQL statements, the optimizer creates access plans when you
run your application.
The bind file contains the SQL statements and other data required to
create an access package. You can use the bind file to re-bind your
application later without having to precompile it first. The re-binding
creates access plans that are optimized for current database conditions.
You need to re-bind your application if it will access a different database
from the one against which it was precompiled. You should re-bind your
application if the database statistics have changed since the last binding.

3. Compile the modified source files (and other files without SQL statements)
using the host language compiler.

4. Link the object files with the DB2 and host language libraries to produce
an executable program.

5. Bind the bind file to create the access package if this was not already done
at precompile time, or if a different database is going to be accessed.

6. Run the application. The application accesses the database using the access
plan in the package.

Related concepts:

v “Embedded SQL in REXX Applications” on page 336
v “Embedded SQL Statements in C and C++” on page 167
v “Embedded SQL Statements in COBOL” on page 217
v “Embedded SQL Statements in FORTRAN” on page 242
v “Embedded SQL Statements in Java” on page 278
v “Embedded SQL for Java (SQLj)” on page 15

Related tasks:

v “Embedding SQL Statements in a Host Language” on page 71

DB2 Call Level Interface

DB2® CLI is a programming interface that your C and C++ applications can
use to access DB2 databases. DB2 CLI is based on the Microsoft® Open

10 Programming Client Applications

Database Connectivity (ODBC) specification, and the ISO CLI standard. Since
DB2 CLI is based on industry standards, application programmers who are
already familiar with these database interfaces may benefit from a shorter
learning curve.

When you use DB2 CLI, your application passes dynamic SQL statements as
function arguments to the database manager for processing. As such, DB2 CLI
is an alternative to embedded dynamic SQL.

It is also possible to run the SQL statements as static SQL in a CLI, ODBC or
JDBC application. The CLI/ODBC/JDBC Static Profiling feature enables end
users of an application to replace the use of dynamic SQL with static SQL in
many cases. For more information, see:

http://www.ibm.com/software/data/db2/udb/staticcli

You can build an ODBC application without using an ODBC driver manager,
and simply use DB2’s ODBC driver on any platform by linking your
application with libdb2 on UNIX, and db2cli.lib on Windows® operating
systems. The DB2 CLI sample programs demonstrate this. They are located in
sqllib/samples/cli on UNIX® and sqllib\samples\cli on Windows
operating systems.

You do not need to precompile or bind DB2 CLI applications because they use
common access packages provided with DB2. You simply compile and link
your application.

However, before your DB2 CLI or ODBC applications can access DB2
databases, the DB2 CLI bind files that come with the DB2 AD Client must be
bound to each DB2 database that will be accessed. This occurs automatically
with the execution of the first statement, but we recommend that the database
administrator bind the bind files from one client on each platform that will
access a DB2 database.

For example, suppose you have AIX, Solaris, and Windows 98 clients that
each access two DB2 databases. The administrator should bind the bind files
from one AIX® client on each database that will be accessed. Next, the
administrator should bind the bind files from one Solaris client on each
database that will be accessed. Finally, the administrator should do the same
on one Windows 98 client.

Related concepts:

v “Administrative APIs in Embedded SQL or DB2 CLI Programs” on page 48
v “DB2 Call Level Interface (CLI) versus Embedded Dynamic SQL” on page

155
v “Advantages of DB2 CLI over Embedded SQL” on page 157

Chapter 1. Overview of Supported Programming Interfaces 11

v “When to Use DB2 CLI or Embedded SQL” on page 159
v “DB2 CLI versus Embedded Dynamic SQL” on page 12

Related reference:

v “DB2 CLI Samples” in the Application Development Guide: Building and
Running Applications

DB2 CLI versus Embedded Dynamic SQL

You can develop dynamic applications using either embedded dynamic SQL
statements or DB2® CLI. In both cases, SQL statements are prepared and
processed at run time. Each method has unique advantages.

The advantages of DB2 CLI are as follows:

Portability DB2 CLI applications use a standard set of functions to pass
SQL statements to the database. All you need to do is compile
and link DB2 CLI applications before you can run them. In
contrast, you must precompile embedded SQL applications,
compile them, and then bind them to the database before you
can run them. This process effectively ties your application to
a particular database.

No binding You do not need to bind individual DB2 CLI applications to
each database they access. You only need to bind the bind
files that are shipped with DB2 CLI once for all your DB2 CLI
applications. This can significantly reduce the amount of time
you spend managing your applications.

Extended fetching and input
DB2 CLI functions enable you to retrieve multiple rows in the
database into an array with a single call. They also let you
execute an SQL statement many times using an array of input
variables.

Consistent interface to catalog
Database systems contain catalog tables that have information
about the database and its users. The form of these catalogs
can vary among systems. DB2 CLI provides a consistent
interface to query catalog information about components such
as tables, columns, foreign and primary keys, and user
privileges. This shields your application from catalog changes
across releases of database servers, and from differences
among database servers. You don’t have to write catalog
queries that are specific to a particular server or product
version.

12 Programming Client Applications

Extended data conversion
DB2 CLI automatically converts data between SQL and C data
types. For example, fetching any SQL data type into a C char
data type converts it into a character-string representation.
This makes DB2 CLI well-suited for interactive query
applications.

No global data areas
DB2 CLI eliminates the need for application controlled, often
complex global data areas, such as SQLDA and SQLCA,
typically associated with embedded SQL applications. Instead,
DB2 CLI automatically allocates and controls the necessary
data structures, and provides a handle for your application to
reference them.

Retrieve result sets from stored procedures
DB2 CLI applications can retrieve multiple rows and result
sets generated from a stored procedure residing on a DB2
Universal Database™ server, a DB2 for MVS/ESA™ server
(Version 5 or later), or an OS/400® server (Version 5 or later).
Support for multiple result sets retrieval on OS/400 requires
that PTF (Program Temporary Fix) SI01761 be applied to the
server. Contact your OS/400 system administrator to ensure
that this PTF has been applied.

Scrollable cursors
DB2 CLI supports server-side scrollable cursors that can be
used in conjunction with array output. This is useful in GUI
applications that display database information in scroll boxes
that make use of the Page Up, Page Down, Home and End
keys. You can declare a cursor as scrollable and then move
forwards or backwards through the result set by one or more
rows. You can also fetch rows by specifying an offset from the
current row, the beginning or end of a result set, or a specific
row you bookmarked previously.

The advantages of embedded dynamic SQL are as follows:

Granular Security
All DB2 CLI users share the same privileges. Embedded SQL
offers the advantage of more granular security through
granting execute privileges to particular users for a package.

More Supported Languages
Embedded SQL supports more than just C and C++. This
might be an advantage if you prefer to code your applications
in another language.

Chapter 1. Overview of Supported Programming Interfaces 13

More Consistent with Static SQL
Dynamic SQL is generally more consistent with static SQL. If
you already know how to program static SQL, moving to
dynamic SQL might not be as difficult as moving to DB2 CLI.

Related concepts:

v “DB2 Call Level Interface (CLI) versus Embedded Dynamic SQL” on page
155

v “Advantages of DB2 CLI over Embedded SQL” on page 157
v “When to Use DB2 CLI or Embedded SQL” on page 159

Java Database Connectivity (JDBC)

DB2’s Java™ support includes JDBC, a vendor-neutral dynamic SQL interface
that provides data access to your application through standardized Java
methods. JDBC is similar to DB2® CLI in that you do not have to precompile
or bind a JDBC program. As a vendor-neutral standard, JDBC applications
offer increased portability. An application written using JDBC uses only
dynamic SQL.

JDBC can be especially useful for accessing DB2 databases across the Internet.
Using the Java programming language, you can develop JDBC applets and
applications that access and manipulate data in remote DB2 databases using a
network connection. You can also create JDBC stored procedures that reside
on the server, access the database server, and return information to a remote
client application that calls the stored procedure.

The JDBC API, which is similar to the CLI/ODBC API, provides a standard
way to access databases from Java code. Your Java code passes SQL
statements as method arguments to the DB2 JDBC driver. The driver handles
the JDBC API calls from your client Java code.

Java’s portability enables you to deliver DB2 access to clients on multiple
platforms, requiring only a Java-enabled web browser, or a Java runtime
environment.

JDBC Type 2

Java applications based on the JDBC type 2 driver rely on the DB2 client to
connect to DB2. You start your application from the desktop or command line,
like any other application. The DB2 JDBC driver handles the JDBC API calls
from your application, and uses the client connection to communicate the
requests to the server and to receive the results. You cannot create Java
applets using the JDBC type 2 driver.

14 Programming Client Applications

Note: The JDBC type 2 driver is recommended for WebSphere Application
Servers.

JDBC Type 3

If you use the JDBC type 3 driver, you can only create Java applets. Java
applets do not require the DB2 client to be installed on the client machine.
Typically, you would embed the applet in a HyperText Markup Language
(HTML) web page.

To run an applet based on the JDBC type 3 driver, you need only a
Java-enabled web browser or applet viewer on the client machine. When you
load your HTML page, the browser downloads the Java applet to your
machine, which then downloads the Java class files and DB2’s JDBC driver.
When your applet calls the JDBC API to connect to DB2, the JDBC driver
establishes a separate network connection with the DB2 database through the
JDBC applet server residing on the Web server.

Note: The JDBC type 3 driver is deprecated for Version 8.

JDBC Type 4

You can use the JDBC type 4 driver, which is new for Version 8, to create both
Java applications and applets. To run an application or an applet that is based
on the type 4 driver, you only require the db2jcc.jar file. No DB2 client is
required.

For more information on DB2 JDBC support, visit the Web page at:
http://www.ibm.com/software/data/db2/java

Related concepts:

v “Comparison of SQLj to JDBC” on page 258

Related tasks:

v “Coding JDBC Applications and Applets” on page 268

Embedded SQL for Java (SQLj)

DB2® Java™ embedded SQL (SQLj) support is provided by the DB2 AD Client.
With DB2 SQLj support, in addition to DB2 JDBC support, you can build and
run SQLj applets, applications, and stored procedures. These contain static
SQL and use embedded SQL statements that are bound to a DB2 database.

For more information on DB2 SQLj support, visit the Web page at:
http://www.ibm.com/software/data/db2/java

Chapter 1. Overview of Supported Programming Interfaces 15

http://www.ibm.com/software/data/db2/java
http://www.ibm.com/software/data/db2/java

Related concepts:

v “Comparison of SQLj to JDBC” on page 258

ActiveX Data Objects and Remote Data Objects

You can write Microsoft® Visual Basic and Microsoft Visual C++ database
applications that conform to the Data Access Object (DAO) and Remote Data
Object (RDO) specifications. DB2® also supports ActiveX Data Object (ADO)
applications that use the Microsoft OLE DB to ODBC Bridge.

ActiveX Data Objects (ADO) allow you to write an application to access and
manipulate data in a database server through an OLE DB provider. The
primary benefits of ADO are high speed development time, ease of use, and a
small disk footprint.

Remote Data Objects (RDO) provide an information model for accessing
remote data sources through ODBC. RDO offers a set of objects that make it
easy to connect to a database, execute queries and stored procedures,
manipulate results, and commit changes to the server. It is specifically
designed to access remote ODBC relational data sources, and makes it easier
to use ODBC without complex application code.

For full samples of DB2 applications that use the ADO and RDO
specifications, see the following directories:
v For Visual Basic ActiveX Data Object samples, refer to

sqllib\samples\VB\ADO
v For Visual Basic Remote Data Object samples, refer to

sqllib\samples\VB\RDO
v For Visual Basic Microsoft Transaction Server samples, refer to

sqllib\samples\VB\MTS
v For Visual C++ ActiveX Data Object samples, refer to

sqllib\samples\VC\ADO

Related tasks:

v “Building ADO Applications with Visual Basic” in the Application
Development Guide: Building and Running Applications

v “Building RDO Applications with Visual Basic” in the Application
Development Guide: Building and Running Applications

v “Building ADO Applications with Visual C++” in the Application
Development Guide: Building and Running Applications

Related reference:

v “Visual Basic Samples” in the Application Development Guide: Building and
Running Applications

16 Programming Client Applications

v “Visual C++ Samples” in the Application Development Guide: Building and
Running Applications

Perl DBI

DB2® supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. The DB2 Universal Database™ Perl DBI website
is located at:

http://www.ibm.com/software/data/db2/perl/

and contains the latest DBD::DB2 driver, and related information.

Perl is an interpreted language and the Perl DBI Module uses dynamic SQL.
This makes Perl an ideal language for quickly creating and revising
prototypes of DB2 applications. The Perl DBI Module uses an interface that is
quite similar to the CLI and JDBC interfaces. This makes it easy to port Perl
prototypes to CLI and JDBC.

Related concepts:

v “Programming Considerations for Perl” on page 329

ODBC End-User Tools

You can use ODBC end-user tools such as Lotus® Approach, Microsoft®

Access, and Microsoft Visual Basic to create applications. ODBC tools provide
a simpler alternative to developing applications than using a high-level
programming language.

Lotus Approach® provides two ways to access DB2® data. You can use the
graphical interface to perform queries, develop reports, and analyze data. Or
you can develop applications using LotusScript, a full-featured, object-oriented
programming language that comes with a wide array of objects, events,
methods, and properties, along with a built-in program editor.

Web Applications

The sections that follow describe the products and functions that are available
for building Web applications.

Tools for Building Web Applications

DB2® Universal Database supports all the key Internet standards, making it
an ideal database for use on the Web. It has in-memory speed to facilitate
Internet searches and complex text matching combined with the scalability
and availability characteristics of a relational database. Because DB2 Universal
Database supports WebSphere, Java™ and XML Extender, it makes it easy for
you to deploy your e-business applications.

Chapter 1. Overview of Supported Programming Interfaces 17

http://www.ibm.com/software/data/db2/perl/

DB2 Universal Developer’s Edition has several tools that provide Web
enablement support. WebSphere® Studio Application Developer, Version 4, is
an integrated development environment (IDE) that enables you to build, test,
and deploy Java applications to a WebSphere Application Server and DB2
Universal Database. WebSphere Studio is a suite of tools that brings all
aspects of Web site development into a common interface. WebSphere
Application Server Advanced Edition (single-server) provides a robust
deployment environment for e-business applications. Its components let you
build and deploy personalized, dynamic Web content quickly and easily.

Related concepts:

v “WebSphere Studio” on page 18
v “XML Extender” on page 19

WebSphere Studio

WebSphere® Studio is a suite of tools that brings all aspects of Web site
development into a common interface. The WebSphere Studio makes it easier
than ever to cooperatively create, assemble, publish, and maintain dynamic
interactive Web applications. The Studio is composed of the Workbench, the
Page Designer, the Remote Debugger, and wizards, and it comes with trial
copies of companion Web development products, such as Macromedia Flash,
Fireworks, Freehand, and Director. WebSphere Studio enables you to do
everything you need to create interactive Web sites that support your
advanced business functions.

WebSphere Application Server Standard Edition (provided with DB2®

Universal Developer’s Edition) is a component of WebSphere Studio. It
combines the portability of server-side business applications with the
performance and manageability of Java™ technologies to offer a
comprehensive platform for designing Java-based Web applications. It enables
powerful interactions with enterprise databases and transaction systems. You
can run the DB2 server on the same machine as WebSphere Application
Server or on a different Web server.

WebSphere Application Server Advanced Edition (not provided with DB2
Universal Developer’s Edition) provides additional support for Enterprise
JavaBean applications. DB2 Universal Database™ is provided with the
WebSphere Application Server Advanced Edition, to be used as the
administrative server repository. It introduces server capabilities for
applications built to the EJB Specification from Sun Microsystems, which
provides support for integrating Web applications to non-Web business
systems.

Related concepts:

v “Enterprise Java Beans” on page 317

18 Programming Client Applications

Related reference:

v “Java WebSphere Samples” in the Application Development Guide: Building
and Running Applications

XML Extender

Extensible Markup Language (XML) is the accepted standard technique for
data exchange between applications. An XML document is a tagged document
which is human-legible. The text consists of character data and markup tags.
The markup tags are definable by the author of the document. A Document
Type Definition (DTD) is used to declare the markup definitions and
constraints. DB2® XML Extender (provided with DB2 Universal Developer’s
Edition, as well as with Personal Developer’s Edition on Windows) gives a
mechanism for programs to manipulate XML data using SQL extensions.

The DB2 XML Extender introduces three new data types: XMLVARCHAR, XMLCLOB,
and XMLFILE. The extender provides UDFs to store, extract and update XML
documents located within single or multiple columns and tables. Searching
can be performed on the entire XML document or based on structural
components using the location path, which uses a subset of the Extensible
Stylesheet Language Transformation (XSLT) and XPath for XML Path
Language.

To facilitate storing XML documents as a set of columns, the DB2 XML
Extender provides an administration tool to aid the designer with
XML-to-relational database mapping. The Document Access Definition (DAD)
is used to maintain the structural and mapping data for the XML documents.
The DAD is defined and stored as an XML document, which makes it simple
to manipulate and understand. New stored procedures are available to
compose or decompose the document.

For more information on DB2 XML Extender, visit:

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

Related concepts:

v “Document Access Definition Extension File” on page 312

MQSeries Enablement

A set of MQSeries® functions are provided with DB2® Universal Database to
allow DB2 applications to interact with asynchronous messaging operations.
This means that MQSeries support is available to applications written in any
programming language supported by DB2.

Chapter 1. Overview of Supported Programming Interfaces 19

In a basic configuration, an MQSeries server is located on the database server
machine along with DB2 Universal Database. The MQSeries functions are
available from a DB2 server and provide access to other MQSeries
applications. Multiple DB2 clients can concurrently access the MQSeries
functions through the database. The MQSeries operations allow DB2
applications to asynchronously communicate with other MQSeries
applications. For instance, the new functions provide a simple way for a DB2
application to publish database events to remote MQSeries applications,
initiate a workflow through the optional MQSeries Workflow product, or
communicate with an existing application package with the optional MQSeries
Integrator product.

Net.Data

Net.Data® enables Internet and intranet access to DB2® data through your
web applications. It exploits Web server interfaces (APIs), providing higher
performance than common gateway interface (CGI) applications. Net.Data
supports client-side processing as well as server-side processing with
languages such as Java, REXX, Perl and C++. Net.Data provides conditional
logic and a rich macro language. It also provides XML support which allows
you to generate XML tags as output from your Net.Data macro, instead of
manually entering the tags. You can also specify an XML style sheet (XSL) to
be used to format and display the generated output. Net.Data is only
available as a Web-based download. For more information, refer to the
following Web site:

http://www-4.ibm.com/software/data/net.data/support/index.html

Note: Net.Data support stabilized in DB2 Version 7.2, and no enhancements
for Net.Data support are planned for the future.

Related concepts:

v “Tools for Building Web Applications” on page 17
v “XML Extender” on page 19

Programming Features

The sections that follow describe the programming features that are available
with DB2.

DB2 Programming Features

DB2® comes with a variety of features that run on the server which you can
use to supplement or extend your applications. When you use DB2 features,
you do not have to write your own code to perform the same tasks. DB2 also

20 Programming Client Applications

http://www.ibm.com/software/data/net.data/support/index.html

lets you store some parts of your code at the server instead of keeping all of it
in your client application. This can have performance and maintenance
benefits.

There are features to protect data and to define relationships between data. As
well, there are object-relational features to create flexible, advanced
applications. You can use some features in more than one way. For example,
constraints enable you to protect data and to define relationships between
data values. Here are some key DB2 features:
v Constraints
v User-defined types (UDTs) and large objects (LOBs)
v User-defined functions (UDFs)
v Triggers
v Stored procedures

To decide whether or not to use DB2 features, consider the following points:

Application independence
You can make your application independent of the data it processes.
Using DB2 features that run at the database enables you to maintain
and change the logic surrounding the data without affecting your
application. If you need to make a change to that logic, you only need
to change it in one place; at the server, and not in each application
that accesses the data.

Performance
You can make your application perform more quickly by storing and
running parts of your application on the server. This shifts some
processing to generally more powerful server machines, and can
reduce network traffic between your client application and the server.

Application requirements
Your application might have unique logic that other applications do
not. For example, if your application processes data entry errors in a
particular order that would be inappropriate for other applications,
you might want to write your own code to handle this situation.

In some cases, you might decide to use DB2 features that run on the server
because they can be used by several applications. In other cases, you might
decide to keep logic in your application because it is used by your application
only.

Related concepts:

v “DB2 Stored Procedures” on page 22
v “DB2 User-Defined Functions and Methods” on page 22

Chapter 1. Overview of Supported Programming Interfaces 21

v “User-Defined Types (UDTs) and Large Objects (LOBs)” on page 24
v “DB2 Triggers” on page 27

DB2 Stored Procedures

Typically, applications access the database across the network. This can result
in poor performance if a lot of data is being returned. A stored procedure runs
on the database server. A client application can call the stored procedure
which then performs the database accessing without returning unnecessary
data across the network. Only the results the client application needs are
returned by the stored procedure.

You gain several benefits using stored procedures:

Reduced network traffic
Grouping SQL statements together can save on network
traffic. A typical application requires two trips across the
network for each SQL statement. Grouping SQL statements
results in two trips across the network for each group of
statements, resulting in better performance for applications.

Access to features that exist only on the server
Stored procedures can have access to commands that run only
on the server, such as LIST DATABASE DIRECTORY and LIST
NODE DIRECTORY; they might have the advantages of
increased memory and disk space on server machines; and
they can access any additional software installed on the
server.

Enforcement of business rules
You can use stored procedures to define business rules that
are common to several applications. This is another way to
define business rules, in addition to using constraints and
triggers.

When an application calls the stored procedure, it will process
data in a consistent way according to the rules defined in the
stored procedure. If you need to change the rules, you only
need to make the change once in the stored procedure, not in
every application that calls the stored procedure.

Related concepts:

v “Development Center” on page 23

DB2 User-Defined Functions and Methods

The built-in capabilities supplied through SQL may not satisfy all of your
application needs. To allow you to extend those capabilities, DB2® supports

22 Programming Client Applications

user-defined functions (UDFs) and methods. You can write your own code in
Visual Basic, C/C++, Java, or SQL to perform operations within any SQL
statement that returns a single scalar value or a table.

UDFs and methods give you significant flexibility. They return a single scalar
value as part of an expression. Additionally, functions can return whole tables
from non-database sources such as spreadsheets.

UDFs and methods provide a way to standardize your applications. By
implementing a common set of routines, many applications can process data
in the same way, thus ensuring consistent results.

User-defined functions and methods also support object-oriented
programming in your applications. They provide for abstraction, allowing you
to define the common interfaces that can be used to perform operations on
data objects. And they provide for encapsulation, allowing you to control
access to the underlying data of an object, protecting it from direct
manipulation and possible corruption.

Development Center

DB2® Development Center provides an easy-to-use development environment
for creating, installing, and testing stored procedures. It allows you to focus
on creating your stored procedure logic rather than the details of registering,
building, and installing stored procedures on a DB2 server. Additionally, with
Development Center, you can develop stored procedures on one operating
system and build them on other server operating systems.

Development Center is a graphical application that supports rapid
development. Using Development Center, you can perform the following
tasks:
v Create new stored procedures.
v Build stored procedures on local and remote DB2 servers.
v Modify and rebuild existing stored procedures.
v Test and debug the execution of installed stored procedures.

You can launch Development Center as a separate application from the DB2
Universal Database™ program group, or you can launch Development Center
from any of the following development applications:
v Microsoft® Visual Studio
v Microsoft Visual Basic
v IBM® VisualAge® for Java™

You can also launch Development Center from the Control Center for DB2 for
OS/390. You can start Development Center as a separate process from the

Chapter 1. Overview of Supported Programming Interfaces 23

Control Center Tools menu, toolbar, or Stored Procedures folder. In addition,
from the Development Center Project window, you can export one or more
selected SQL stored procedures built to a DB2 for OS/390® server to a
specified file capable of running within the command line processor (CLP).

Development Center manages your work by using projects. Each
Development Center project saves your connections to specific databases, such
as DB2 for OS/390 servers. In addition, you can create filters to display
subsets of the stored procedures on each database. When opening a new or
existing Development Center project, you can filter stored procedures so that
you view stored procedures based on their name, schema, language, or
collection ID (for OS/390 only).

Connection information is saved in a Development Center project; therefore,
when you open an existing project, you are automatically prompted to enter
your user ID and password for the database. Using the Inserting SQL Stored
Procedure wizard, you can build SQL stored procedures on a DB2 for OS/390
server. For an SQL stored procedure built to a DB2 for OS/390 server, you can
set specific compile, pre-link, link, bind, runtime, WLM environment, and
external security options.

Additionally, you can obtain SQL costing information about the SQL stored
procedure, including information about CPU time and other DB2 costing
information for the thread on which the SQL stored procedure is running. In
particular, you can obtain costing information about latch/lock contention
wait time, the number of getpages, the number of read I/Os, and the number
of write I/Os.

To obtain costing information, Development Center connects to a DB2 for
OS/390 server, executes the SQL statement, and calls a stored procedure
(DSNWSPM) to find out how much CPU time the SQL stored procedure used.

Related concepts:

v “DB2 Stored Procedures” on page 22
v “OLE Automation Routines” on page 26

User-Defined Types (UDTs) and Large Objects (LOBs)

Every data element in the database is stored in a column of a table, and each
column is defined to have a data type. The data type places limits on the
types of values you can put into the column and the operations you can
perform on them. For example, a column of integers can only contain
numbers within a fixed range. DB2® includes a set of built-in data types with
defined characteristics and behaviors: character strings, numerics, datetime
values, large objects, Nulls, graphic strings, binary strings, and datalinks.

24 Programming Client Applications

Sometimes, however, the built-in data types might not serve the needs of your
applications. DB2 provides user-defined types (UDTs) which enable you to
define the distinct data types you need for your applications.

UDTs are based on the built-in data types. When you define a UDT, you also
define the operations that are valid for the UDT. For example, you might
define a MONEY data type that is based on the DECIMAL data type.
However, for the MONEY data type, you might allow only addition and
subtraction operations, but not multiplication and division operations.

Large Objects (LOBs) enable you to store and manipulate large, complex data
objects in the database: objects such as audio, video, images, and large
documents.

The combination of UDTs and LOBs gives you considerable power. You are no
longer restricted to using the built-in data types provided by DB2 to model
your business data, and to capture the semantics of that data. You can use
UDTs to define large, complex data structures for advanced applications.

In addition to extending built-in data types, UDTs provide several other
benefits:

Support for object-oriented programming in your applications
You can group similar objects into related data types. These types
have a name, an internal representation, and a specific behavior. By
using UDTs, you can tell DB2 the name of your new type and how it
is represented internally. A LOB is one of the possible internal
representations for your new type, and is the most suitable
representation for large, complex data structures.

Data integrity through strong typing and encapsulation
Strong typing guarantees that only functions and operations defined
on the distinct type can be applied to the type. Encapsulation ensures
that the behavior of UDTs is restricted by the functions and operators
that can be applied to them. In DB2, behavior for UDTs can be
provided in the form of user-defined functions (UDFs), which can be
written to accommodate a broad range of user requirements.

Performance through integration into the database manager
Because UDTs are represented internally, the same way as built-in
data types, they share the same efficient code as built-in data types to
implement built-in functions, comparison operators, indexes, and
other functions. The exception to this is UDTs that utilize LOBs, which
cannot be used with comparison operators and indexes.

Related concepts:

Chapter 1. Overview of Supported Programming Interfaces 25

v “Large Object Usage” in the Application Development Guide: Programming
Server Applications

v “User-Defined Types” in the Application Development Guide: Programming
Server Applications

OLE Automation Routines

OLE (Object Linking and Embedding) automation is part of the OLE 2.0
architecture from Microsoft® Corporation. With OLE automation, your
applications, regardless of the language in which they are written, can expose
their properties and methods in OLE automation objects. Other applications,
such as Lotus® Notes or Microsoft Exchange, can then integrate these objects
by taking advantage of these properties and methods through OLE
automation.

DB2® for Windows® operating systems provides access to OLE automation
objects using UDFs, methods, and stored procedures. To access OLE
automation objects and invoke their methods, you must register the methods
of the objects as routines (UDFs, methods, or stored procedures) in the
database. DB2 applications can then use the methods by invoking the
routines.

For example, you can develop an application that queries data in a
spreadsheet created using a product such as Microsoft Excel. To do this, you
would develop an OLE automation table function that retrieves data from the
worksheet, and returns it to DB2. DB2 can then process the data, perform
online analytical processing (OLAP), and return the query result to your
application.

Related concepts:

v “DB2 Stored Procedures” on page 22
v “Development Center” on page 23

OLE DB Table Functions

Microsoft® OLE DB is a set of OLE/COM interfaces that provide applications
with uniform access to data stored in diverse information sources. DB2®

Universal Database simplifies the creation of OLE DB applications by enabling
you to define table functions that access an OLE DB data source. You can
perform operations including GROUP BY, JOIN, and UNION, on data sources
that expose their data through OLE DB interfaces. For example, you can
define an OLE DB table function to return a table from a Microsoft Access
database or a Microsoft Exchange address book, then create a report that
seamlessly combines data from this OLE DB table function with data in your
DB2 database.

26 Programming Client Applications

Using OLE DB table functions reduces your application development effort by
providing built-in access to any OLE DB provider. For C, Java, and OLE
automation table functions, the developer needs to implement the table
function, whereas in the case of OLE DB table functions, a generic built-in
OLE DB consumer interfaces with any OLE DB provider to retrieve data. You
only need to register a table function of language type OLEDB, and refer to
the OLE DB provider and the relevant rowset as a data source. You do not
have to do any UDF programming to take advantage of OLE DB table
functions.

Related concepts:

v “Purpose of the IBM OLE DB Provider for DB2” on page 355
v “OLE DB Services Automatically Enabled by IBM OLE DB Provider” on

page 359

Related reference:

v “IBM OLE DB Provider Support for OLE DB Components and Interfaces”
on page 366

v “IBM OLE DB Provider Support for OLE DB Properties” on page 369

DB2 Triggers

A trigger defines a set of actions executed by a delete, insert, or update
operation on a specified table. When such an SQL operation is executed, the
trigger is said to be activated. The trigger can be activated before the SQL
operation or after it. You define a trigger using the SQL statement CREATE
TRIGGER.

You can use triggers that run before an update or insert in several ways:
v To check or modify values before they are actually updated or inserted in

the database. This is useful if you need to transform data from the way the
user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

Similarly, you can use triggers that run after an update or insert in several
ways:
v To update data in other tables. This capability is useful for maintaining

relationships between data or in keeping audit trail information.
v To check against other data in the table or in other tables. This capability is

useful to ensure data integrity when referential integrity constraints aren’t
appropriate, or when table check constraints limit checking to the current
table only.

Chapter 1. Overview of Supported Programming Interfaces 27

v To run non-database operations coded in user-defined functions. This
capability is useful when issuing alerts or to update information outside the
database.

You gain several benefits using triggers:

Faster application development
Triggers are stored in the database, and are available to all
applications, which relieves you of the need to code equivalent
functions for each application.

Global enforcement of business rules
Triggers are defined once, and are used by all applications that use
the data governed by the triggers.

Easier maintenance
Any changes need to be made only once in the database instead of in
every application that uses a trigger.

Related concepts:

v “Triggers in Application Development” in the Application Development Guide:
Programming Server Applications

v “Trigger Creation Guidelines” in the Application Development Guide:
Programming Server Applications

28 Programming Client Applications

Chapter 2. Coding a DB2 Application

Prerequisites for Programming 30
DB2 Application Coding Overview 30

Programming a Standalone Application . . 30
Creating the Declaration Section of a
Standalone Application 31
Declaring Variables That Interact with the
Database Manager 32
Declaring Variables That Represent SQL
Objects 33
Declaring Host Variables with the
db2dclgn Declaration Generator 35
Relating Host Variables to an SQL
Statement 36
Declaring the SQLCA for Error Handling 37
Error Handling Using the WHENEVER
Statement 38
Adding Non-Executable Statements to an
Application 40
Connecting an Application to a Database 40
Coding Transactions 41
Ending a Transaction with the COMMIT
Statement 42
Ending a Transaction with the ROLLBACK
Statement 43
Ending an Application Program 44
Implicit Ending of a Transaction in a
Standalone Application 45
Application Pseudocode Framework . . . 45
Facilities for Prototyping SQL Statements 46
Administrative APIs in Embedded SQL or
DB2 CLI Programs 48
Definition of FIPS 127-2 and ISO/ANS
SQL92 48

Controlling Data Values and Relationships . . 48
Data Value Control. 49
Data Value Control Using Data Types . . 49
Data Value Control Using Unique
Constraints 49
Data Value Control Using Table Check
Constraints 50
Data Value Control Using Referential
Integrity Constraints 50
Data Value Control Using Views with
Check Option 51

Data Value Control Using Application
Logic and Program Variable Types . . . 51
Data Relationship Control 51
Data Relationship Control Using
Referential Integrity Constraints 52
Data Relationship Control Using Triggers 52
Data Relationship Control Using Before
Triggers 53
Data Relationship Control Using After
Triggers 53
Data Relationship Control Using
Application Logic 54
Application Logic at the Server 54

Authorization Considerations for SQL and
APIs 55

Authorization Considerations for
Embedded SQL 55
Authorization Considerations for Dynamic
SQL. 57
Authorization Considerations for Static
SQL. 58
Authorization Considerations for APIs . . 58

Testing the Application 59
Setting up the Test Environment for an
Application 59

Setting up a Testing Environment . . . 59
Creating Test Tables and Views . . . 60
Generating Test Data 61

Debugging and Optimizing an Application 63
IBM DB2 Universal Database Project Add-In
for Microsoft Visual C++ 64

The IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ 64
IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++
Terminology 66
Activating the IBM DB2 Universal
Database Project Add-In for Microsoft
Visual C++ 67
Activating the IBM DB2 Universal
Database Tools Add-In for Microsoft Visual
C++. 68

© Copyright IBM Corp. 1993-2002 29

Prerequisites for Programming

Before developing an application, you require the appropriate operating
environment. The following must also be properly installed and configured:
v A supported compiler or interpreter for developing your applications.
v DB2 Universal Database, either locally or remotely.
v DB2 Application Development Client.

You can develop applications at a server or on any client that has the DB2
Application Development Client installed. You can run applications with
either the server, the DB2 Run-Time Client, or the DB2 Administrative Client.
You can also develop Java™ JDBC programs on one of these clients, provided
that you install the ″Java Enablement″ component when you install the client.
That means you can execute any DB2 application on these clients. However,
unless you also install the DB2 Application Development Client with these
clients, you can only develop JDBC applications on them.

DB2® supports the C, C++, Java (SQLj), COBOL, and FORTRAN
programming languages through its precompilers. In addition, DB2 provides
support for the Perl, Java (JDBC), and REXX dynamically interpreted
languages

Note: FORTRAN and REXX support stabilized in DB2 Version 5, and no
enhancements for FORTRAN or REXX support are planned for the
future.

DB2 provides a sample database, which you require to run the supplied
sample programs.

Related tasks:

v “Setting Up the Application Development Environment” in the Application
Development Guide: Building and Running Applications

v “Setting Up the sample Database” in the Application Development Guide:
Building and Running Applications

DB2 Application Coding Overview

The sections that follow provide an overview of coding a DB2 application.

Programming a Standalone Application

A standalone application is an application that does not call database objects,
such as stored procedures, when it executes. When you write the application,

30 Programming Client Applications

you must ensure that certain SQL statements appear at the beginning and end
of the program to handle the transition from the host language to the
embedded SQL statements.

Procedure:

To program a standalone application, you must ensure that you:
1. Create the declaration section.
2. Connect to the database.
3. Write one or more transactions.
4. End each transaction using either of the following methods:

v Commit the changes made by the application to the database.
v Roll back the changes made by the application to the database.

5. End the program.

Related concepts:

v “Prerequisites for Programming” on page 30
v “Application Pseudocode Framework” on page 45
v “Facilities for Prototyping SQL Statements” on page 46
v “Sample Files” in the Application Development Guide: Building and Running

Applications

v “Sample Programs: Structure and Design” in the Application Development
Guide: Building and Running Applications

Related tasks:

v “Creating the Declaration Section of a Standalone Application” on page 31
v “Connecting an Application to a Database” on page 40
v “Coding Transactions” on page 41
v “Ending a Transaction with the COMMIT Statement” on page 42
v “Ending a Transaction with the ROLLBACK Statement” on page 43
v “Ending an Application Program” on page 44
v “Setting up a Testing Environment” on page 59

Creating the Declaration Section of a Standalone Application

The beginning of every program must contain a declaration section, which
contains:
v Declarations of all variables and data structures that the database manager

uses to interact with the host program
v SQL statements that provide for error handling by setting up the SQL

Communications Area (SQLCA)

Chapter 2. Coding a DB2 Application 31

Note that DB2 applications written in Java throw an SQLException, which
you handle in a catch block, rather than using the SQLCA.

A program may contain multiple SQL declare sections.

Procedure:

To create the declaration section:
1. Use the SQL statement BEGIN DECLARE SECTION to open the section.
2. Code your declarations
3. Use the SQL statement END DECLARE SECTION to end the section.

Related concepts:

v “SQLSTATE and SQLCODE Values in Java” on page 304

Related tasks:

v “Declaring Variables That Interact with the Database Manager” on page 32
v “Declaring Variables That Represent SQL Objects” on page 33
v “Relating Host Variables to an SQL Statement” on page 36
v “Declaring Host Variables with the db2dclgn Declaration Generator” on

page 35
v “Declaring the SQLCA for Error Handling” on page 37

Declaring Variables That Interact with the Database Manager

All variables that interact with the database manager must be declared in the
SQL declare section.

Host program variables declared in an SQL declare section are called host
variables. You can use host variables in host-variable references in SQL
statements. The host-variable tag is used in syntax diagrams in SQL statements.

Procedure:

To declare a variable, code it in the SQL declare section. An example of a host
variable in C/C++ is as follows:

EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
double salary;
char CH;
char name1[9], NAME2[9];
/* C comment */
short nul_ind;

EXEC SQL END DECLARE SECTION;

32 Programming Client Applications

The attributes of each host variable depend on how the variable is used in the
SQL statement. For example, variables that receive data from or store data in
DB2 tables must have data type and length attributes compatible with the
column being accessed. To determine the data type for each variable, you
must be familiar with DB2 data types.

Related reference:

v “Supported SQL Data Types in C and C++” on page 200
v “Supported SQL Data Types in COBOL” on page 231
v “Supported SQL Data Types in FORTRAN” on page 251
v “Supported SQL Data Types in Java” on page 264
v “Supported SQL Data Types in REXX” on page 345

Declaring Variables That Represent SQL Objects

Declare the variables that represent SQL objects in the SQL declare section of
your application program.

Procedure:

Code the variable in the appropriate format for the language in which you are
writing your application program.

When you code the variable, remember that the names of tables, aliases,
views, and correlations have a maximum length of 128 bytes. Column names
have a maximum length of 30 bytes. Schema names have a maximum length
of 30 bytes. Future releases of DB2 may increase the lengths of column names
and other identifiers of SQL objects up to 128 bytes. If you declare variables
that represent SQL objects with less than 128-byte lengths, future increases in
SQL object identifier lengths may affect the stability of your applications. For
example, if you declare the variable char[9]schema_name in a C++ application
to hold a schema name, your application functions properly for the allowed
schema names in DB2 Version 6, which have a maximum length of 8 bytes.

char[9] schema_name; /* holds null-delimited schema name of up to 8 bytes;
works for DB2 Version 6, but may truncate schema names in future releases */

However, if you migrate the database to a version of DB2 that accepts schema
names with a maximum length of 30 bytes, your application cannot
differentiate between the schema names LONGSCHEMA1 and LONGSCHEMA2. The
database manager truncates the schema names to their 8-byte limit of
LONGSCHE, and any statement in your application that depends on
differentiating the schema names fails. To increase the longevity of your
application, declare the schema name variable with a 128-byte length as
follows:

Chapter 2. Coding a DB2 Application 33

char[129] schema_name; /* holds null-delimited schema name of up to 128 bytes
good for DB2 Version 7 and beyond */

To improve the future operation of your application, consider declaring all of
the variables in your applications that represent SQL object names with
lengths of 128 bytes. You must weigh the advantage of improved
compatibility against the increased system resources that longer variables
require.

For C/C++ applications, you can simplify the coding of declarations and
increase the clarity of your code by using C macro expansion to declare the
lengths of SQL object identifiers. Because the include file sql.h declares
SQL_MAX_IDENT to be 128, you can easily declare SQL object identifiers
with the SQL_MAX_IDENT macro. For example:
#include <sql.h>

char[SQL_MAX_IDENT+1] schema_name;
char[SQL_MAX_IDENT+1] table_name;
char[SQL_MAX_IDENT+1] employee_column;
char[SQL_MAX_IDENT+1] manager_column;

Related concepts:

v “Host Variables in C and C++” on page 169
v “Syntax for Fixed and Null-Terminated Character Host Variables in C and

C++” on page 173
v “C Macro Expansion” on page 184
v “Host Variables in COBOL” on page 219
v “Host Variables in FORTRAN” on page 244
v “Host Variables in Java” on page 263
v “Host Variables in REXX” on page 338

Related reference:

v “Syntax for Numeric Host Variables in C and C++” on page 172
v “Syntax for Variable-Length Character Host Variables in C or C++” on page

174
v “Syntax for Graphic Declaration of Single-Graphic and Null-Terminated

Graphic Forms in C and C++” on page 177
v “Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C or

C++” on page 178
v “Syntax for Large Object (LOB) Host Variables in C or C++” on page 179
v “Syntax for Large Object (LOB) Locator Host Variables in C or C++” on

page 182
v “Syntax for File Reference Host Variable Declarations in C or C++” on page

183

34 Programming Client Applications

v “Syntax for Numeric Host Variables in COBOL” on page 221
v “Syntax for Fixed-Length Character Host Variables in COBOL” on page 222
v “Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 224
v “Syntax for LOB Host Variables in COBOL” on page 225
v “Syntax for LOB Locator Host Variables in COBOL” on page 226
v “Syntax for File Reference Host Variables in COBOL” on page 226
v “Syntax for Numeric Host Variables in FORTRAN” on page 245
v “Syntax for Character Host Variables in FORTRAN” on page 246
v “Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 248
v “Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on

page 249
v “Syntax for File Reference Host Variables in FORTRAN” on page 249
v “Syntax for LOB Locator Declarations in REXX” on page 342
v “Syntax for LOB File Reference Declarations in REXX” on page 343

Declaring Host Variables with the db2dclgn Declaration Generator
You can use the Declaration Generator to generate declarations for a given
table in a database. It creates embedded SQL declaration source files which
you can easily insert into your applications. db2dclgn supports the C/C++,
Java, COBOL, and FORTRAN languages.

Procedure:

To generate declaration files, enter the db2dclgn command in the following
format:

db2dclgn -d database-name -t table-name [options]

For example, to generate the declarations for the STAFF table in the SAMPLE
database in C in the output file staff.h, issue the following command:

db2dclgn -d sample -t staff -l C

The resulting staff.h file contains:
struct
{

short id;
struct
{

short length;
char data[9];

} name;
short dept;
char job[5];

Chapter 2. Coding a DB2 Application 35

short years;
double salary;
double comm;

} staff;

Related reference:

v “db2dclgn - Declaration Generator” in the Command Reference

Relating Host Variables to an SQL Statement

You use host variables to receive data from the database manager or to
transfer data to it from the host program. Host variables that receive data
from the database manager are output host variables, while those that transfer
data to it from the host program are input host variables.

Consider the following SELECT INTO statement:

SELECT HIREDATE, EDLEVEL
INTO :hdate, :lvl
FROM EMPLOYEE
WHERE EMPNO = :idno

The statement contains two output host variables, hdate and lvl, and one
input host variable, idno. The database manager uses the data stored in the
host variable idno to determine the EMPNO of the row that is retrieved from
the EMPLOYEE table. If the database manager finds a row that meets the
search criteria, hdate and lvl receive the data stored in the columns
HIREDATE and EDLEVEL, respectively. This statement illustrates an
interaction between the host program and the database manager using
columns of the EMPLOYEE table.

Procedure:

To define the host variable for use with a column:
1. Find out the SQL data type for that column. Do this by querying the

system catalog, which is a set of views containing information about all
tables created in the database.

2. Code the appropriate declarations based on the host language.
Each column of a table is assigned a data type in the CREATE TABLE
definition. You must relate this data type to the host language data type.
For example, the INTEGER data type is a 32-bit signed integer. This is
equivalent to the following data description entries in each of the host
languages, respectively:

C/C++:
sqlint32 variable_name;

36 Programming Client Applications

Java: int variable_name;

COBOL:
01 variable-name PICTURE S9(9) COMPUTATIONAL-5.

FORTRAN:
INTEGER*4 variable_name

You can also use the Declaration Generator utility (db2dclgn) to generate the
appropriate declarations for a given table in a database.

Related concepts:

v “Catalog views” in the SQL Reference, Volume 1

Related tasks:

v “Declaring Variables That Interact with the Database Manager” on page 32
v “Declaring Host Variables with the db2dclgn Declaration Generator” on

page 35
v “Creating the Declaration Section of a Standalone Application” on page 31

Related reference:

v “Supported SQL Data Types in C and C++” on page 200
v “Supported SQL Data Types in COBOL” on page 231
v “Supported SQL Data Types in FORTRAN” on page 251
v “Supported SQL Data Types in Java” on page 264
v “Supported SQL Data Types in REXX” on page 345

Declaring the SQLCA for Error Handling

You can declare the SQLCA in your application program so that the database
manager can return information to your application. When you preprocess
your program, the database manager inserts host language variable
declarations in place of the INCLUDE SQLCA statement. The system
communicates with your program using the variables for warning flags, error
codes, and diagnostic information.

After executing each SQL statement, the system returns a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes
the execution of the statement, and SQLSTATE is a character field that
provides common error codes across IBM’s relational database products.
SQLSTATE also conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note that if SQLCODE is less than 0, it means an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means
a warning has been issued, but the statement is still processed.

Chapter 2. Coding a DB2 Application 37

For a DB2 application written in C or C++, if the application is made up of
multiple source files, only one of the files should include the EXEC SQL
INCLUDE SQLCA statement to avoid multiple definitions of the SQLCA. The
remaining source files should use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

Procedure:

To declare the SQLCA, code the INCLUDE SQLCA statement in your program as
follows:
v For C or C++ applications use:

EXEC SQL INCLUDE SQLCA;

v For Java applications, you do not explicitly use the SQLCA. Instead, use the
SQLException instance methods to get the SQLSTATE and SQLCODE
values.

v For COBOL applications use:
EXEC SQL INCLUDE SQLCA END-EXEC.

v For FORTRAN applications use:
EXEC SQL INCLUDE SQLCA

If your application must be compliant with the ISO/ANS SQL92 or FIPS 127-2
standard, do not use the above statements or the INCLUDE SQLCA statement.

Related concepts:

v “Definition of FIPS 127-2 and ISO/ANS SQL92” on page 48
v “Error Handling Using the WHENEVER Statement” on page 38
v “SQLSTATE and SQLCODE Variables in C and C++” on page 206
v “SQLSTATE and SQLCODE Variables in COBOL” on page 235
v “SQLSTATE and SQLCODE Variables in FORTRAN” on page 253
v “SQLSTATE and SQLCODE Values in Java” on page 304
v “SQLSTATE and SQLCODE Variables in Perl” on page 331

Related tasks:

v “Creating the Declaration Section of a Standalone Application” on page 31

Error Handling Using the WHENEVER Statement

The WHENEVER statement causes the precompiler to generate source code
that directs the application to go to a specified label if either an error, a
warning, or no rows are found during execution. The WHENEVER statement
affects all subsequent executable SQL statements until another WHENEVER
statement alters the situation.

38 Programming Client Applications

The WHENEVER statement has three basic forms:
EXEC SQL WHENEVER SQLERROR action
EXEC SQL WHENEVER SQLWARNING action
EXEC SQL WHENEVER NOT FOUND action

In the above statements:

SQLERROR
Identifies any condition where SQLCODE < 0.

SQLWARNING
Identifies any condition where SQLWARN(0) = W or SQLCODE > 0
but is not equal to 100.

NOT FOUND
Identifies any condition where SQLCODE = 100.

In each case, the action can be either of the following:

CONTINUE
Indicates to continue with the next instruction in the application.

GO TO label
Indicates to go to the statement immediately following the label
specified after GO TO. (GO TO can be two words, or one word,
GOTO.)

If the WHENEVER statement is not used, the default action is to continue
processing if an error, warning, or exception condition occurs during
execution.

The WHENEVER statement must appear before the SQL statements you want
to affect. Otherwise, the precompiler does not know that additional
error-handling code should be generated for the executable SQL statements.
You can have any combination of the three basic forms active at any time. The
order in which you declare the three forms is not significant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER
handling before any SQL statements are executed inside the handler. You can
do this using the WHENEVER SQLERROR CONTINUE statement.

Related reference:

v “WHENEVER statement” in the SQL Reference, Volume 2

Chapter 2. Coding a DB2 Application 39

Adding Non-Executable Statements to an Application

If you need to include non-executable SQL statements in an application
program, you typically put them in the declaration section of the application.
Examples of non-executable statements are the INCLUDE, INCLUDE SQLDA,
and DECLARE CURSOR statements.

Procedure:

If you want to use the non-executable statement INCLUDE in your
application, code it as follows:

INCLUDE text-file-name

Related tasks:

v “Creating the Declaration Section of a Standalone Application” on page 31

Connecting an Application to a Database
Your program must establish a connection to the target database before it can
run any executable SQL statements. This connection identifies both the
authorization ID of the user who is running the program, and the name of the
database server on which the program is run. Generally, your application
process can only connect to one database server at a time. This server is called
the current server. However, your application can connect to multiple database
servers within a multisite update environment. In this case, only one server
can be the current server.

Restrictions:

The following restrictions apply:
v A connection lasts until a CONNECT RESET, CONNECT TO, or

DISCONNECT statement is issued.
v In a multisite update environment, a connection also lasts until a DB2

RELEASE then DB2 COMMIT is issued. A CONNECT TO statement does
not terminate a connection when using multisite update.

Procedure:

Your program can establish a connection to a database server either:
v Explicitly, using the CONNECT statement
v Implicitly, connecting to the default database server
v For Java applications, through a Connection instance

See the CONNECT statement description for a discussion of connection states
and how to use the CONNECT statement. Upon initialization, the application

40 Programming Client Applications

requester establishes a default database server. If implicit connects are
enabled, application processes started after initialization connect implicitly to
the default database server. It is good practice to use the CONNECT
statement as the first SQL statement executed by an application program. An
explicit CONNECT avoids accidentally executing SQL statements against the
default database.

Related concepts:

v “Multisite Update” on page 419

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

Coding Transactions

A transaction is a sequence of SQL statements (possibly with intervening host
language code) that the database manager treats as a whole. An alternative
term that is often used for transaction is unit of work.

Prerequisites:

A connection must be established with the database against which the
transaction will execute.

Procedure:

To code a transaction:
1. Start the transaction with an executable SQL statement.

After the connection to the database is established, your program can issue
one or more:
v Data manipulation statements (for example, the SELECT statement)
v Data definition statements (for example, the CREATE statement)
v Data control statements (for example, the GRANT statement)

An executable SQL statement always occurs within a transaction. If a
program contains an executable SQL statement after a transaction ends, it
automatically starts a new transaction.

Note: The following six statements do not start a transaction because they
are not executable statements:
v BEGIN DECLARE SECTION
v INCLUDE SQLCA
v END DECLARE SECTION

Chapter 2. Coding a DB2 Application 41

v INCLUDE SQLDA
v DECLARE CURSOR
v WHENEVER

2. End the transaction in either of the following ways:
v COMMIT the transaction
v ROLLBACK the transaction

Related tasks:

v “Ending a Transaction with the COMMIT Statement” on page 42
v “Ending a Transaction with the ROLLBACK Statement” on page 43

Ending a Transaction with the COMMIT Statement

The COMMIT statement ends the current transaction and makes the database
changes performed during the transaction visible to other processes.

Procedure:

Commit changes as soon as application requirements permit. In particular,
write your programs so that uncommitted changes are not held while waiting
for input from a terminal, as this can result in database resources being held
for a long time. Holding these resources prevents other applications that need
these resources from running.

Your application programs should explicitly end any transactions before
terminating.

If you do not end transactions explicitly, DB2 automatically commits all the
changes made during the program’s pending transaction when the program
ends successfully, except on Windows operating systems. On Windows
operating systems, if you do not explicitly commit the transaction, the
database manager always rolls back the changes.

DB2 rolls back the changes under the following conditions:
v A log full condition
v Any other system condition that causes database manager processing to

end

The COMMIT statement has no effect on the contents of host variables.

Related concepts:

v “Implicit Ending of a Transaction in a Standalone Application” on page 45
v “Return Codes” on page 123

42 Programming Client Applications

v “Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields”
on page 123

Related tasks:

v “Ending an Application Program” on page 44

Related reference:

v “COMMIT statement” in the SQL Reference, Volume 2

Ending a Transaction with the ROLLBACK Statement

To ensure the consistency of data at the transaction level, the database
manager ensures that either all operations within a transaction are completed,
or none are completed. Suppose, for example, that the program is supposed to
deduct money from one account and add it to another. If you place both of
these updates in a single transaction, and a system failure occurs while they
are in progress, when you restart the system the database manager
automatically performs crash recovery to restore the data to the state it was in
before the transaction began. If a program error occurs, the database manager
restores all changes made by the statement in error. The database manager
will not undo work performed in the transaction prior to execution of the
statement in error, unless you specifically roll it back.

Procedure:

To prevent the changes that were effected by the transaction from being
committed to the database, issue the ROLLBACK statement to end the
transaction. The ROLLBACK statement returns the database to the state it was
in before the transaction ran.

Note: On Windows operating systems, if you do not explicitly commit the
transaction, the database manager always rolls back the changes.

If you use a ROLLBACK statement in a routine that was entered because of
an error or warning and you use the SQL WHENEVER statement, then you
should specify WHENEVER SQLERROR CONTINUE and WHENEVER
SQLWARNING CONTINUE before the ROLLBACK. This avoids a program
loop if the ROLLBACK fails with an error or warning.

In the event of a severe error, you will receive a message indicating that you
cannot issue a ROLLBACK statement. Do not issue a ROLLBACK statement if
a severe error occurs such as the loss of communications between the client
and server applications, or if the database gets corrupted. After a severe error,
the only statement you can issue is a CONNECT statement.

The ROLLBACK statement has no effect on the contents of host variables.

Chapter 2. Coding a DB2 Application 43

You can code one or more transactions within a single application program,
and it is possible to access more than one database from within a single
transaction. A transaction that accesses more than one database is called a
multisite update.

Related concepts:

v “Implicit Ending of a Transaction in a Standalone Application” on page 45
v “Remote Unit of Work” on page 419
v “Multisite Update” on page 419

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

v “WHENEVER statement” in the SQL Reference, Volume 2

Ending an Application Program

End an application program to clean up resources that the program was
using.

Procedure:

To properly end your program:
1. End the current transaction (if one is in progress) by explicitly issuing

either a COMMIT statement or a ROLLBACK statement.
2. Release your connection to the database server by using the CONNECT

RESET statement.
3. Clean up resources used by the program. For example, free any temporary

storage or data structures that are used.

Note: If the current transaction is still active when the program terminates,
DB2 implicitly ends the transaction. Because DB2’s behavior when it
implicitly ends a transaction is platform specific, you should explicitly
end all transactions by issuing a COMMIT or a ROLLBACK statement
before the program terminates.

Related concepts:

v “Implicit Ending of a Transaction in a Standalone Application” on page 45

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

44 Programming Client Applications

Implicit Ending of a Transaction in a Standalone Application

If your program terminates without ending the current transaction, DB2®

implicitly ends the current transaction. DB2 implicitly terminates the current
transaction by issuing either a COMMIT or a ROLLBACK statement when the
application ends. Whether DB2 issues a COMMIT or ROLLBACK depends on
factors such as:
v Whether the application terminated normally

On most supported operating systems, DB2 implicitly commits a
transaction if the termination is normal, or implicitly rolls back the
transaction if it is abnormal. Note that what your program considers to be
an abnormal termination may not be considered abnormal by the database
manager. For example, you may code exit(-16) when your application
encounters an unexpected error and terminate your application abruptly.
The database manager considers this to be a normal termination and
commits the transaction. The database manager considers items such as an
exception or a segmentation violation as abnormal terminations.

v The platform on which the DB2 server runs
On Windows® 32-bit operating systems, DB2 always rolls back the
transaction regardless of whether your application terminates normally or
abnormally. If you want the transaction to be committed, you must issue
the COMMIT statement explicitly.

v Whether the application uses the DB2 context APIs for multiple-thread
database access
If your application uses these, DB2 implicitly rolls back the transaction
whether your application terminates normally or abnormally. Unless you
explicitly commit the transaction using the COMMIT statement, DB2 rolls
back the transaction.

Related concepts:

v “Purpose of Multiple-Thread Database Access” on page 207

Related tasks:

v “Ending an Application Program” on page 44

Related reference:

v “COMMIT statement” in the SQL Reference, Volume 2

v “ROLLBACK statement” in the SQL Reference, Volume 2

Application Pseudocode Framework

The following example summarizes the general framework for a DB2
application program in pseudocode format. You must, of course, tailor this
framework to suit your own program.

Chapter 2. Coding a DB2 Application 45

Start Program
EXEC SQL BEGIN DECLARE SECTION |

DECLARE USERID FIXED CHARACTER (8) |
DECLARE PW FIXED CHARACTER (8) |

| Application
(other host variable declarations) | Setup

|
EXEC SQL END DECLARE SECTION |
EXEC SQL INCLUDE SQLCA |
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK |

(program logic)

EXEC SQL CONNECT TO database A USER :userid USING :pw |
EXEC SQL SELECT ... |
EXEC SQL INSERT ... | First Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

EXEC SQL CONNECT TO database B USER :userid USING :pw |
EXEC SQL SELECT ... |
EXEC SQL DELETE ... | Second Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

EXEC SQL CONNECT TO database A |
EXEC SQL SELECT ... |
EXEC SQL DELETE ... | Third Unit

(more SQL statements) | of Work
EXEC SQL COMMIT |

(more program logic)

EXEC SQL CONNECT RESET |
ERRCHK |

| Application
(check error information in SQLCA) | Cleanup

|
End Program

Related tasks:

v “Programming a Standalone Application” on page 30

Facilities for Prototyping SQL Statements

As you design and code your application, you can take advantage of certain
database manager features and utilities to prototype portions of your SQL
code, and to improve performance. For example, you can do the following:

46 Programming Client Applications

v Use the Control Center or the command line processor (CLP) to test many
SQL statements before you attempt to compile and link a complete
program.
This allows you to define and manipulate information stored in a database
table, index, or view. You can add, delete, or update information as well as
generate reports from the contents of tables. Note that you have to
minimally change the syntax for some SQL statements in order to use host
variables in your embedded SQL program. Host variables are used to store
data that is output to your screen. In addition, some embedded SQL
statements (such as BEGIN DECLARE SECTION) are not supported by the
Command Center or CLP as they are not relevant to that environment.
You can also redirect the input and output of command line processor
requests. For example, you could create one or more files containing SQL
statements you need as input into a command line processor request, to
save retyping the statement.

v Use the Explain facility to get an idea of the estimated costs of the DELETE,
INSERT, UPDATE, or SELECT statements you plan to use in your program.
The Explain facility places the information about the structure and the
estimated costs of the subject statement into user supplied tables. You can
view this information using Visual Explain or the db2exfmt utility.

v Use the system catalog views to easily retrieve information about existing
databases. The database manager creates and maintains the system catalog
tables on which the views are based during normal operation as databases
are created, altered, and updated. These views contain data about each
database, including authorities granted, column names, data types, indexes,
package dependencies, referential constraints, table names, views, and so
on. Data in the system catalog views is available through normal SQL query
facilities.
You can update some system catalog views containing statistical
information used by the SQL optimizer. You may change some columns in
these views to influence the optimizer or to investigate the performance of
hypothetical databases. You can use this method to simulate a production
system on your development or test system and analyze how queries
perform.

Related concepts:

v “Catalog views” in the SQL Reference, Volume 1

v “Catalog statistics tables” in the Administration Guide: Performance

v “Catalog statistics for modeling and what-if planning” in the Administration
Guide: Performance

v “General rules for updating catalog statistics manually” in the
Administration Guide: Performance

v “SQL explain facility” in the Administration Guide: Performance

Chapter 2. Coding a DB2 Application 47

v “DB2 Universal Database Tools for Developing Applications” on page 5

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Administrative APIs in Embedded SQL or DB2 CLI Programs

Your application can use APIs to access database manager facilities that are
not available using SQL statements.

You can use the DB2® APIs to:
v Manipulate the database manager environment, which includes cataloging

and uncataloging databases and nodes, and scanning database and node
directories. You can also use APIs to create, delete, and migrate databases.

v Provide facilities to import and export data, and administer, backup, and
restore the database.

v Modify the database manager and database configuration parameter values.
v Provide operations specific to the client/server environment.
v Provide the run-time interface for precompiled SQL statements. These APIs

are not usually called directly by the programmer. Instead, they are inserted
into the modified source file by the precompiler after processing.

The database manager includes APIs for language vendors who want to write
their own precompiler, and other APIs useful for developing applications.

Related concepts:

v “Authorization Considerations for APIs” on page 58
v “Sample Programs: Structure and Design” in the Application Development

Guide: Building and Running Applications

Definition of FIPS 127-2 and ISO/ANS SQL92

FIPS 127-2 refers to Federal Information Processing Standards Publication 127-2 for
Database Language SQL. ISO/ANS SQL92 refers to American National Standard
Database Language SQL X3.135-1992 and International Standard ISO/IEC
9075:1992, Database Language SQL

Controlling Data Values and Relationships

The sections that follow describe how to control data values and data
relationships.

48 Programming Client Applications

Data Value Control

One traditional area of application logic is validating and protecting data
integrity by controlling the values allowed in the database. Applications have
logic that specifically checks data values as they are entered for validity. (For
example, checking that the department number is a valid number and that it
refers to an existing department.) There are several different ways of
providing these same capabilities in DB2, but from within the database.

Related concepts:

v “Data Value Control Using Data Types” on page 49
v “Data Value Control Using Unique Constraints” on page 49
v “Data Value Control Using Table Check Constraints” on page 50
v “Data Value Control Using Referential Integrity Constraints” on page 50
v “Data Value Control Using Views with Check Option” on page 51
v “Data Value Control Using Application Logic and Program Variable Types”

on page 51

Data Value Control Using Data Types

The database stores every data element in a column of a table, and defines
each column with a data type. This data type places certain limits on the
types of values for the column. For example, an integer must be a number
within a fixed range. The use of the column in SQL statements must conform
to certain behaviors; for instance, the database does not compare an integer to
a character string. DB2® includes a set of built-in data types with defined
characteristics and behaviors. DB2 also supports defining your own data
types, called user-defined distinct types, that are based on the built-in types but
do not automatically support all the behaviors of the built-in type. You can
also use data types, like binary large object (BLOB), to store data that may
consist of a set of related values, such as a data structure.

Related concepts:

v “User-Defined Distinct Types” in the Application Development Guide:
Programming Server Applications

Data Value Control Using Unique Constraints

Unique constraints prevent occurrences of duplicate values in one or more
columns within a table. Unique and primary keys are the supported unique
constraints. For example, you can define a unique constraint on the DEPTNO
column in the DEPARTMENT table to ensure that the same department
number is not given to two departments.

Chapter 2. Coding a DB2 Application 49

Use unique constraints if you need to enforce a uniqueness rule for all
applications that use the data in a table.

Related tasks:

v “Defining a unique constraint” in the Administration Guide: Implementation

v “Adding a unique constraint” in the Administration Guide: Implementation

Data Value Control Using Table Check Constraints

You can use a table check constraint to define restrictions, beyond those of the
data type, on the values that are allowed for a column in the table. Table
check constraints take the form of range checks or checks against other values
in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

Related tasks:

v “Defining a table check constraint” in the Administration Guide:
Implementation

v “Adding a table check constraint” in the Administration Guide:
Implementation

Data Value Control Using Referential Integrity Constraints

Use referential integrity (RI) constraints if you must maintain value-based
relationships for all applications that use the data. For example, you can use
an RI constraint to ensure that the value of a DEPTNO column in an
EMPLOYEE table matches a value in the DEPARTMENT table. This constraint
prevents inserts, updates or deletes that would otherwise result in missing
DEPARTMENT information. By centralizing your rules in the database, RI
constraints make the rules generally applicable and easier to maintain.

Related concepts:

v “Constraints” in the SQL Reference, Volume 1

v “Data Relationship Control Using Referential Integrity Constraints” on page
52

v “Referential Integrity Differences among IBM Relational Database Systems”
on page 488

50 Programming Client Applications

Data Value Control Using Views with Check Option

If your application cannot define the desired rules as table check constraints,
or the rules do not apply to all uses of the data, there is another alternative to
placing the rules in the application logic. You can consider creating a view of
the table with the conditions on the data as part of the WHERE clause and the
WITH CHECK OPTION clause specified. This view definition restricts the
retrieval of data to the set that is valid for your application. Additionally, if
you can update the view, the WITH CHECK OPTION clause restricts updates,
inserts, and deletes to the rows applicable to your application.

Related reference:

v “CREATE VIEW statement” in the SQL Reference, Volume 2

Data Value Control Using Application Logic and Program Variable Types

When you write your application logic in a programming language, you also
declare variables to provide some of the same restrictions on data that are
described in other topics about data value control. In addition, you can choose
to write code to enforce rules in the application instead of the database. Place
the logic in the application server when:
v The rules are not generally applicable, except in the case of views that use

the WITH CHECK OPTION
v You do not have control over the definitions of the data in the database
v You believe the rule can be more effectively handled in the application logic

For example, processing errors on input data in the order that they are
entered may be required, but cannot be guaranteed from the order of
operations within the database.

Related concepts:

v “Data Value Control Using Views with Check Option” on page 51

Data Relationship Control

A major area of focus in application logic is in the area of managing the
relationships between different logical entities in your system. For example, if
you add a new department, then you need to create a new account code.
DB2® provides two methods of managing the relationships between different
objects in your database: referential integrity constraints and triggers.

Related concepts:

v “Data Relationship Control Using Referential Integrity Constraints” on page
52

v “Data Relationship Control Using Triggers” on page 52

Chapter 2. Coding a DB2 Application 51

v “Data Relationship Control Using Before Triggers” on page 53
v “Data Relationship Control Using After Triggers” on page 53
v “Data Relationship Control Using Application Logic” on page 54

Data Relationship Control Using Referential Integrity Constraints

Referential integrity (RI) constraints, considered from the perspective of data
relationship control, allow you to control the relationships between data in
more than one table. Use the CREATE TABLE or ALTER TABLE statements to
define the behavior of operations that affect the related primary key, such as
DELETE and UPDATE.

RI constraints enforce your rules on the data across one or more tables. If the
rules apply for all applications that use the data, then RI constraints centralize
the rules in the database. This makes the rules generally applicable and easier
to maintain.

Related concepts:

v “Constraints” in the SQL Reference, Volume 1

Related tasks:

v “Defining referential constraints” in the Administration Guide: Implementation

Related reference:

v “ALTER TABLE statement” in the SQL Reference, Volume 2

v “CREATE TABLE statement” in the SQL Reference, Volume 2

Data Relationship Control Using Triggers

You can use triggers before or after an update to support logic that can also
be performed in an application. If the rules or operations supported by the
triggers apply for all applications that use the data, then triggers centralize the
rules or operations in the database, making it generally applicable and easier
to maintain.

Related concepts:

v “Data Relationship Control Using Before Triggers” on page 53
v “Data Relationship Control Using After Triggers” on page 53
v “DB2 Triggers” on page 27

Related tasks:

v “Creating a trigger” in the Administration Guide: Implementation

v “Creating Triggers” in the Application Development Guide: Programming Server
Applications

52 Programming Client Applications

Related reference:

v “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Data Relationship Control Using Before Triggers

By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually modified.
These can be used to transform input from the application (user view of the
data) to an internal database format where desired. These before triggers can
also be used to cause other non-database operations to be activated through
user-defined functions.

Related concepts:

v “Data Relationship Control Using After Triggers” on page 53
v “DB2 Triggers” on page 27

Related tasks:

v “Creating a trigger” in the Administration Guide: Implementation

v “Creating Triggers” in the Application Development Guide: Programming Server
Applications

Related reference:

v “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Data Relationship Control Using After Triggers

Triggers that run after an update, insert, or delete can be used in several
ways:
v Triggers can update, insert, or delete data in the same or other tables. This

is useful to maintain relationships between data or to keep audit trail
information.

v Triggers can check data against values of data in the rest of the table or in
other tables. This is useful when you cannot use RI constraints or check
constraints because of references to data from other rows from this or other
tables.

v Triggers can use user-defined functions to activate non-database operations.
This is useful, for example, for issuing alerts or updating information
outside the database.

Related concepts:

v “Data Relationship Control Using Before Triggers” on page 53
v “DB2 Triggers” on page 27

Related tasks:

Chapter 2. Coding a DB2 Application 53

v “Creating a trigger” in the Administration Guide: Implementation

v “Creating Triggers” in the Application Development Guide: Programming Server
Applications

Related reference:

v “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Data Relationship Control Using Application Logic

You may decide to write code to enforce rules or perform related operations
in the application instead of the database. You must do this for cases where
you cannot generally apply the rules to the database. You may also choose to
place the logic in the application when you do not have control over the
definitions of the data in the database or you believe the application logic can
handle the rules or operations more efficiently.

Related concepts:

v “Application Logic at the Server” on page 54

Application Logic at the Server

A final aspect of application design for which DB2® offers additional
capability is running some of your application logic at the database server.
Usually you will choose this design to improve performance, but you may
also run application logic at the server to support common functions.

You can use the following:
v Stored procedures

A stored procedure is a routine for your application that is called from the
client application logic, but runs on the database server. The most common
reason to use a stored procedure is for database-intensive processing that
produces only small amounts of result data. This can save a large amount
of communications across the network during the execution of the stored
procedure. You may also consider using a stored procedure for a set of
operations that are common to multiple applications. In this way, all the
applications use the same logic to perform the operation.

v User-defined functions
You can write a user-defined function (UDF) for use in performing
operations within an SQL statement to return:
– A single scalar value (scalar function)
– A table from a non-DB2 data source, for example, an ASCII file or a Web

page (table function)

54 Programming Client Applications

UDFs are useful for tasks like transforming data values, performing
calculations on one or more data values, or extracting parts of a value (such
as extracting parts of a large object).

v Triggers
Triggers can be used to invoke user-defined functions. This is useful when
you always want a certain non-SQL operation performed when specific
statements occur, or data values are changed. Examples include such
operations as issuing an electronic mail message under specific
circumstances or writing alert type information to a file.

Related concepts:

v “Data Relationship Control Using Before Triggers” on page 53
v “Data Relationship Control Using After Triggers” on page 53
v “Guidelines for stored procedures” in the Administration Guide: Performance

v “Trigger Interactions with Referential Constraints” in the Application
Development Guide: Programming Server Applications

v “DB2 Stored Procedures” on page 22
v “DB2 User-Defined Functions and Methods” on page 22
v “DB2 Triggers” on page 27

Related tasks:

v “Creating a trigger” in the Administration Guide: Implementation

v “Creating Triggers” in the Application Development Guide: Programming Server
Applications

Related reference:

v “CREATE TRIGGER statement” in the SQL Reference, Volume 2

Authorization Considerations for SQL and APIs

The sections that follow describe the general authorization considerations for
embedded SQL, and the authorization considerations for static and dynamic
SQL, and for APIs.

Authorization Considerations for Embedded SQL

An authorization allows a user or group to perform a general task such as
connecting to a database, creating tables, or administering a system. A privilege
gives a user or group the right to access one specific database object in a
specified way. DB2® uses a set of privileges to provide protection for the
information that you store in it.

Chapter 2. Coding a DB2 Application 55

Most SQL statements require some type of privilege on the database objects
which the statement utilizes. Most API calls usually do not require any
privilege on the database objects which the call utilizes, however, many APIs
require that you possess the necessary authority in order to invoke them. The
DB2 APIs enable you to perform the DB2 administrative functions from
within your application program. For example, to recreate a package stored in
the database without the need for a bind file, you can use the sqlarbnd (or
REBIND) API.

When you design your application, consider the privileges your users will
need to run the application. The privileges required by your users depend on:
v Whether your application uses dynamic SQL, including JDBC and DB2 CLI,

or static SQL. For information about the privileges required to issue a
statement, see the description of that statement.

v Which APIs the application uses. For information about the privileges and
authorities required for an API call, see the description of that API.

Consider two users, PAYROLL and BUDGET, who need to perform queries
against the STAFF table. PAYROLL is responsible for paying the employees of
the company, so it needs to issue a variety of SELECT statements when
issuing paychecks. PAYROLL needs to be able to access each employee’s
salary. BUDGET is responsible for determining how much money is needed to
pay the salaries. BUDGET should not, however, be able to see any particular
employee’s salary.

Because PAYROLL issues many different SELECT statements, the application
you design for PAYROLL could probably make good use of dynamic SQL.
The dynamic SQL would require that PAYROLL have SELECT privilege on
the STAFF table. This requirement is not a problem because PAYROLL
requires full access to the table.

BUDGET, on the other hand, should not have access to each employee’s
salary. This means that you should not grant SELECT privilege on the STAFF
table to BUDGET. Because BUDGET does need access to the total of all the
salaries in the STAFF table, you could build a static SQL application to
execute a SELECT SUM(SALARY) FROM STAFF, bind the application and
grant the EXECUTE privilege on your application’s package to BUDGET. This
enables BUDGET to obtain the required information, without exposing the
information that BUDGET should not see.

Related concepts:

v “Authorization Considerations for Dynamic SQL” on page 57
v “Authorization Considerations for Static SQL” on page 58
v “Authorization Considerations for APIs” on page 58

56 Programming Client Applications

v “Authorization” in the Administration Guide: Planning

Authorization Considerations for Dynamic SQL

To use dynamic SQL in a package bound with DYNAMICRULES RUN
(default), the person who runs a dynamic SQL application must have the
privileges necessary to issue each SQL request performed, as well as the
EXECUTE privilege on the package. The privileges may be granted to the
user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

If you bind the application with the DYNAMICRULES BIND option, DB2
associates your authorization ID with the application packages. This allows
any user who runs the application to inherit the privileges associated with
your authorization ID.

If the program contains no static SQL, the person binding the application (for
embedded dynamic SQL applications) only needs the BINDADD authority on
the database. Again, this privilege can be granted to the user’s authorization
ID, to a group of which the user is a member, or to PUBLIC.

When a package exhibits bind or define behavior, the user that runs the
application needs only the EXECUTE privilege on the package to run it. At
run-time, the binder of a package that exhibits bind behavior must have the
privileges necessary to execute all the dynamic statements generated by the
package, because all authorization checking for dynamic statements is done
using the ID of the binder and not the executors. Similarly, the definer of a
routine whose package exhibits define behavior must have all the privileges
necessary to execute all the dynamic statements generated by the define
behavior package. If you have SYSADM or DBADM authority and create a
bind behavior package, consider using the OWNER BIND option to designate
a different authorization ID. The OWNER BIND option prevents a package
from automatically inheriting SYSADM or DBADM privileges within dynamic
SQL statements. For more information on the DYNAMICRULES and OWNER
bind options, refer to the BIND command. For more information on package
behaviors, see the description of DYNAMICRULES effects on dynamic SQL
statements.

Related concepts:

v “Authorization Considerations for Embedded SQL” on page 55
v “Authorization Considerations for Static SQL” on page 58
v “Authorization Considerations for APIs” on page 58
v “Effects of DYNAMICRULES on Dynamic SQL” on page 135

Related reference:

Chapter 2. Coding a DB2 Application 57

v “BIND” in the Command Reference

Authorization Considerations for Static SQL

To use static SQL, the user running the application only needs the EXECUTE
privilege on the package. No privileges are required for each of the statements
that make up the package. The EXECUTE privilege may be granted to the
user’s authorization ID, to any group of which the user is a member, or to
PUBLIC.

Unless you specify the VALIDATE RUN option when binding the application,
the authorization ID you use to bind the application must have the privileges
necessary to perform all the statements in the application. If VALIDATE RUN
was specified at BIND time, all authorization failures for any static SQL
within this package will not cause the BIND to fail and those statements will
be revalidated at run time. The person binding the application must always
have BINDADD authority. The privileges needed to execute the statements
must be granted to the user’s authorization ID or to PUBLIC. Group
privileges are not used when binding static SQL statements. As with dynamic
SQL, the BINDADD privilege can be granted to the user authorization ID, to a
group of which the user is a member, or to PUBLIC.

These properties of static SQL give you very precise control over access to
information in DB2.

Related concepts:

v “Authorization Considerations for Embedded SQL” on page 55
v “Authorization Considerations for Dynamic SQL” on page 57
v “Authorization Considerations for APIs” on page 58

Related reference:

v “BIND” in the Command Reference

Authorization Considerations for APIs

Most of the APIs provided by DB2® do not require the use of privileges,
however, many do require some kind of authority to invoke. For the APIs that
do require a privilege, the privilege must be granted to the user running the
application. The privilege may be granted to the user’s authorization ID, to
any group of which the user is a member, or to PUBLIC. For information on
the required privilege and authority to issue each API call, see the description
of the API.

Some APIs can be accessed via a stored procedure interface. For information
whether a specific API can be accessed via a stored procedure, see the
description of that API.

58 Programming Client Applications

Related concepts:

v “Authorization Considerations for Embedded SQL” on page 55
v “Authorization Considerations for Dynamic SQL” on page 57
v “Authorization Considerations for Static SQL” on page 58

Testing the Application

The sections that follow describe how to set up a test environment, and how
to debug and optimize the application.

Setting up the Test Environment for an Application
The sections that follow describe how to set up the test environment for your
application.

Setting up a Testing Environment
To validate your application, you should set up a test environment. For
example, you need a database to test your application’s SQL code.

Procedure:

To set up the test environment, do the following:
1. Create a test database.

To create a test database, write a small server application that calls the
CREATE DATABASE API, or use the command line processor.

2. Create test tables and views.
If your application updates, inserts, or deletes data from tables and views,
use test data to verify its execution. If the application only retrieves data
from tables and views, consider using production-level data when testing
it.

3. Generate test data for the tables.
The input data used to test an application should be valid data that
represents all possible input conditions. If the application verifies that
input data is valid, include both valid and invalid data to verify that the
valid data is processed and the invalid data is flagged.

4. Debug and optimize the application.

Related tasks:

v “Creating Test Tables and Views” on page 60
v “Generating Test Data” on page 61
v “Debugging and Optimizing an Application” on page 63

Related reference:

v “sqlecrea - Create Database” in the Administrative API Reference

Chapter 2. Coding a DB2 Application 59

v “CREATE DATABASE” in the Command Reference

Creating Test Tables and Views

To design the test tables and views needed, first analyze the data needs of the
application. To create a table, you need the CREATETAB authority and the
CREATEIN privilege on the schema. See the CREATE TABLE statement for
alternative authorities.

Procedure:

To create test tables:
1. List the data the application accesses and describe how each data item is

accessed. For example, suppose the application being developed accesses
the TEST.TEMPL, TEST.TDEPT, and TEST.TPROJ tables. You could record
the type of accesses as shown in the following table

Table 1. Description of the Application Data

Table or View
Name

Insert
Rows

Delete
Rows

Column Name Data Type Update
Access

TEST.TEMPL No No EMPNO
LASTNAME
WORKDEPT
PHONENO
JOBCODE

CHAR(6)
VARCHAR(15)
CHAR(3)
CHAR(4)
DECIMAL(3)

Yes
Yes
Yes

TEST.TDEPT No No DEPTNO
MGRNO

CHAR(3)
CHAR(6)

TEST.TPROJ Yes Yes PROJNO
DEPTNO
RESPEMP
PRSTAFF
PRSTDATE
PRENDATE

CHAR(6)
CHAR(3)
CHAR(6)
DECIMAL(5,2)
DECIMAL(6)
DECIMAL(6)

Yes
Yes
Yes
Yes
Yes

2. When the description of the application data access is complete, construct
the test tables and views that are needed to test the application:
v Create a test table when the application modifies data in a table or a

view. Create the following test tables using the CREATE TABLE SQL
statement:
– TEMPL
– TPROJ

v Create a test view when the application does not modify data in the
production database.
In this example, create a test view of the TDEPT table using the
CREATE VIEW SQL statement.

60 Programming Client Applications

3. Generate test data for the tables.

If the database schema is being developed along with the application, the
definitions of the test tables might be refined repeatedly during the
development process. Usually, the primary application cannot both create the
tables and access them because the database manager cannot bind statements
that refer to tables and views that do not exist. To make the process of
creating and changing tables less time-consuming, consider developing a
separate application to create the tables. You can also create test tables
interactively using the command line processor (CLP).

After you complete the procedure, you need to create the related topics for
this task.

Related tasks:

v “Generating Test Data” on page 61

Related reference:

v “CREATE TABLE statement” in the SQL Reference, Volume 2

Generating Test Data
After creating the test tables, you can populate them with test data to verify
the data handling behavior of the application.

Procedure:

Use any of the following methods to insert data into a table:
v INSERT...VALUES (an SQL statement) puts one or more rows into a table

each time the command is issued.
v INSERT...SELECT obtains data from an existing table (based on a SELECT

clause) and puts it into the table identified with the INSERT statement.
v The IMPORT or LOAD utility inserts large amounts of new or existing data

from a defined source.
v The RESTORE utility can be used to duplicate the contents of an existing

database into an identical test database by using a BACKUP copy of the
original database.

v The DB2MOVE utility to move large numbers of tables between DB2
databases located on workstations.

The following SQL statements demonstrate a technique you can use to
populate your tables with randomly generated test data. Suppose the table
EMP contains four columns, ENO (employee number), LASTNAME (last
name), HIREDATE (date of hire) and SALARY (employee’s salary) as in the
following CREATE TABLE statement:

Chapter 2. Coding a DB2 Application 61

CREATE TABLE EMP (ENO INTEGER, LASTNAME VARCHAR(30),
HIREDATE DATE, SALARY INTEGER);

Suppose you want to populate this table with employee numbers from 1 to a
number, say 100, with random data for the rest of the columns. You can do
this using the following SQL statement:
INSERT INTO EMP
-- generate 100 records
WITH DT(ENO) AS (VALUES(1) UNION ALL
SELECT ENO+1 FROM DT WHERE ENO < 100) �1�

-- Now, use the generated records in DT to create other columns
-- of the employee record.
SELECT ENO, �2�

TRANSLATE(CHAR(INTEGER(RAND()*1000000)), �3�
CASE MOD(ENO,4) WHEN 0 THEN ’aeiou’ || ’bcdfg’

WHEN 1 THEN ’aeiou’ || ’hjklm’
WHEN 2 THEN ’aeiou’ || ’npqrs’

ELSE ’aeiou’ || ’twxyz’ END,
’1234567890’) AS LASTNAME,

CURRENT DATE - (RAND()*10957) DAYS AS HIREDATE, �4�
INTEGER(10000+RAND()*200000) AS SALARY �5�

FROM DT;

SELECT * FROM EMP;

The following is an explanation of the above statement:
1. The first part of the INSERT statement generates 100 records for the first

100 employees using a recursive subquery to generate the employee
numbers. Each record contains the employee number. To change the
number of employees, use a number other than 100.

2. The SELECT statement generates the LASTNAME column. It begins by
generating a random integer up to 6 digits long using the RAND function.
It then converts the integer to its numeric character format using the
CHAR function.

3. To convert the numeric characters to alphabet characters, the statement
uses the TRANSLATE function to convert the ten numeric characters (0
through 9) to alphabet characters. Since there are more than 10 alphabet
characters, the statement selects from five different translations. This
results in names having enough random vowels to be pronounceable and
so the vowels are included in each translation.

4. The statement generates a random HIREDATE value. The value of
HIREDATE ranges back from the current date to 30 years ago. HIREDATE
is calculated by subtracting a random number of days between 0 and
10 957 from the current date. (10 957 is the number of days in 30 years.)

5. Finally, the statement randomly generates the SALARY. The minimum
salary is 10 000, to which a random number from 0 to 200 000 is added.

62 Programming Client Applications

You may also want to consider prototyping any user-defined functions (UDF)
you are developing against the test data.

Related concepts:

v “Import Overview” in the Data Movement Utilities Guide and Reference

v “Load Overview” in the Data Movement Utilities Guide and Reference

v “DB2 User-Defined Functions and Methods” on page 22

Related tasks:

v “Debugging and Optimizing an Application” on page 63

Related reference:

v “INSERT scalar function” in the SQL Reference, Volume 1

v “RESTORE DATABASE” in the Command Reference

Debugging and Optimizing an Application
You can debug and optimize your application while you develop it.

Procedure:

To debug and optimize your application:
v Prototype your SQL statements. You can use the command line processor,

the Explain facility, analyze the system catalog views for information about
the tables and databases that your program is manipulating, and update
certain system catalog statistics to simulate production conditions.

v Use the flagger facility to check the syntax of SQL statements in
applications being developed for DB2 Universal Database for OS/390 and
z/OS, or for conformance to the SQL92 Entry Level standard. This facility
is invoked during precompilation.

v Make full use of the error-handling APIs. For example, you can use
error-handling APIs to print all messages during the testing phase.

v Use the database system monitor to capture certain optimizing information
for analysis.

Related concepts:

v “Catalog statistics for modeling and what-if planning” in the Administration
Guide: Performance

v “Facilities for Prototyping SQL Statements” on page 46
v “The database system-monitor information” in the Administration Guide:

Performance

v “Source File Requirements for Embedded SQL Applications” on page 80

Chapter 2. Coding a DB2 Application 63

IBM DB2 Universal Database Project Add-In for Microsoft Visual C++

The sections that follow describe the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++.

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++

The IBM® DB2® Universal Database Project Add-In for Microsoft® Visual C++
is a collection of management tools and wizards that plug into the Visual C++
component of Visual Studio IDE. The tools and wizards automate and
simplify the various tasks involved in developing applications for DB2 using
embedded SQL.

You can use the IBM DB2 Universal Database™ Project Add-In for Microsoft
Visual C++ to develop, package, and deploy:
v Stored procedures written in C/C++ for DB2 Universal Database on

Windows® operating systems
v Windows C/C++ embedded SQL client applications that access DB2

Universal Database servers
v Windows C/C++ client applications that invoke stored procedures using

C/C++ function call wrappers

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
allows you to focus on the design and logic of your DB2 applications rather
than the actual building and deployment of it.

Some of the tasks performed by the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ include:
v Creating a new embedded SQL module
v Inserting SQL statements into an embedded SQL module using SQL Assist
v Adding imported stored procedures
v Creating an exported stored procedure
v Packaging the DB2 Project
v Deploying the DB2 project from within Visual C++

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ is
presented in the form of a toolbar. The toolbar buttons include:

DB2 Project Properties
Manages the project properties (development database and
code-generation options)

New DB2 Object
Adds a new embedded SQL module, imported stored procedure, or
exported stored procedure

64 Programming Client Applications

DB2 Embedded SQL Modules
Manages the list of embedded SQL modules and their precompiler
options

DB2 Imported Stored Procedures
Manages the list of imported stored procedures

DB2 Exported Stored Procedures
Manages the list of exported stored procedures

Package DB2 Project
Packages the DB2 external project files

Deploy DB2 Project
Deploys the packaged DB2 external project files

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
also has the following three hidden buttons that can be made visible using the
standard Visual C++ tools customization options:

New DB2 Embedded SQL Module
Adds a new C/C++ embedded SQL module

New DB2 Imported Stored Procedure
Imports a new database stored procedure

New DB2 Exported Stored Procedure
Exports a new database stored procedure

The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ can
automatically generate the following code elements:
v Skeletal embedded SQL module files with optional sample SQL statements
v Standard database connect and disconnect embedded SQL functions
v Imported stored procedure call wrapper functions
v Exported stored procedure function templates
v Exported stored procedure data definition language (DDL) files

For more information on the IBM DB2 Universal Database Project Add-In for
Microsoft Visual C++, refer to:
v The online help for the IBM DB2 Universal Database Project Add-In for

Microsoft Visual C++
v http://www.ibm.com/software/data/db2/udb/ide/index.html

Related tasks:

v “Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++” on page 67

Chapter 2. Coding a DB2 Application 65

http://www.ibm.com/software/data/db2/udb/ide/index.html

v “Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++” on page 68

Related reference:

v “IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
Terminology” on page 66

IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
Terminology

The terminology associated with the IBM DB2 Universal Database Project
Add-In for Microsoft Visual C++ is as follows:

IDE project
The standard Visual C++ project

DB2 project
The collection of DB2 project objects that are inserted into the IDE
project. DB2 project objects can be inserted into any Visual C++
project. The DB2 project allows you to manage the various DB2
objects such as embedded SQL modules, imported stored procedures,
and exported stored procedures. You can add, delete, and modify
these objects and their properties.

module
A C/C++ source code file that might contain SQL statements.

development database
The database that is used to compile embedded SQL modules. The
development database is also used to look up the list of importable
database stored procedure definitions.

embedded SQL module
A C/C++ source code file that contains embedded static or dynamic
SQL.

imported stored procedure
A stored procedure, already defined in the database, that the project
invokes.

exported stored procedure
A database stored procedure that is built and defined by the project.

Related concepts:

v “The IBM DB2 Universal Database Project Add-In for Microsoft Visual
C++” on page 64

Related tasks:

v “Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++” on page 67

66 Programming Client Applications

v “Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++” on page 68

Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++

Activate the IBM DB2 Universal Database Project Add-In for Microsoft Visual
C++ to access the floating toolbar.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Microsoft Visual C++ standard
customization options to redisplay the toolbar.

Procedure:

1. Start and stop Visual C++ at least once with your current login ID. The
first time you run Visual C++, a profile is created for your user ID, and
that is what gets updated by the db2vccmd command. If you have not
started it once, and you try to run db2vccmd, you may see errors like the
following:

"Registering DB2 Project add-in ...Failed! (rc = 2)"

2. Register the add-in, if you have not already done so, by entering the
following on the command line:

db2vccmd register

3. Select Tools —> Customize. The Customize notebook opens.
4. Select the Add-ins and Macro Files tab. The Add-ins and Macro Files page

opens.
5. Select the IBM DB2 Project Add-In check box.
6. Click OK. A floating toolbar will be created.

Related concepts:

v “The IBM DB2 Universal Database Project Add-In for Microsoft Visual
C++” on page 64

Related tasks:

v “Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++” on page 68

Related reference:

v “IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
Terminology” on page 66

Chapter 2. Coding a DB2 Application 67

Activating the IBM DB2 Universal Database Tools Add-In for Microsoft
Visual C++

The DB2 Tools Add-In is a toolbar that enables the launch of some of the DB2
administration and development tools from within the Visual C++ integrated
development environment.

Procedure:

To activate the IBM DB2 Universal Database Tools Add-In for Microsoft Visual
C++, perform the following steps:
1. Start and stop Visual C++ at least once with your current login ID. The

first time you run Visual C++, a profile is created for your user ID, and
that is what gets updated by the db2vccmd command. If you have not
started it once, and you try to run db2vccmd, you may see errors like the
following:

"Registering DB2 Project add-in ...Failed! (rc = 2)"

2. Register the add-in, if you have not already done so, by entering the
following on the command line:

db2vccmd register

3. Select Tools —> Customize. The Customize notebook opens.
4. Select the Add-ins and Macro Files tab.
5. Select the IBM DB2 Tools Add-In check box.
6. Click OK. A floating toolbar will be created.

Note: If the toolbar is accidentally closed, you can either deactivate then
reactivate the add-in or use the Visual C++ standard customization
options to redisplay the toolbar.

Related concepts:

v “The IBM DB2 Universal Database Project Add-In for Microsoft Visual
C++” on page 64

Related tasks:

v “Activating the IBM DB2 Universal Database Project Add-In for Microsoft
Visual C++” on page 67

Related reference:

v “IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
Terminology” on page 66

68 Programming Client Applications

Part 2. Embedded SQL

© Copyright IBM Corp. 1993-2002 69

70 Programming Client Applications

Chapter 3. Embedded SQL Overview

Embedding SQL Statements in a Host
Language 71
Source File Creation and Preparation. . . . 73
Packages, Binding, and Embedded SQL . . . 76

Package Creation for Embedded SQL . . 76
Precompilation of Source Files Containing
Embedded SQL 78
Source File Requirements for Embedded
SQL Applications 80
Compilation and Linkage of Source Files
Containing Embedded SQL 81
Package Creation Using the BIND
Command 83

Package Versioning 83
Effect of Special Registers on Bound
Dynamic SQL 85
Resolution of Unqualified Table Names . . 85
Additional Considerations when Binding 86
Advantages of Deferred Binding 87
Bind File Contents 87
Application, Bind File, and Package
Relationships. 88
Precompiler-Generated Timestamps . . . 88
Package Rebinding. 90

Embedding SQL Statements in a Host Language

You can write applications with SQL statements embedded within a host
language. The SQL statements provide the database interface, while the host
language provides the remaining support needed for the application to
execute.

Procedure:

Use the examples in the following table as a guide on how to embed SQL
statements in a host language application. In the example, the application
checks the SQLCODE field of the SQLCA structure to determine whether the
update was successful.

Table 2. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/C++ EXEC SQL UPDATE staff SET job = ’Clerk’ WHERE job = ’Mgr’;
if (SQLCODE < 0)

printf("Update Error: SQLCODE = %ld \n", SQLCODE);

Java (SQLj) try {
#sql { UPDATE staff SET job = ’Clerk’ WHERE job = ’Mgr’ };

}
catch (SQLException e) {

println("Update Error: SQLCODE = " + e.getErrorCode());
}

COBOL EXEC SQL UPDATE staff SET job = ’Clerk’ WHERE job = ’Mgr’ END_EXEC.
IF SQLCODE LESS THAN 0

DISPLAY ’UPDATE ERROR: SQLCODE = ’, SQLCODE.

© Copyright IBM Corp. 1993-2002 71

Table 2. Embedding SQL Statements in a Host Language (continued)

Language Sample Source Code

FORTRAN EXEC SQL UPDATE staff SET job = ’Clerk’ WHERE job = ’Mgr’
if (sqlcode .lt. 0) THEN

write(*,*) ’Update error: sqlcode = ’, sqlcode

SQL statements placed in an application are not specific to the host language.
The database manager provides a way to convert the SQL syntax for
processing by the host language:
v For the C, C++, COBOL, or FORTRAN languages, this conversion is

handled by the DB2 precompiler. The DB2 precompiler is invoked using the
PREP command. The precompiler converts embedded SQL statements
directly into DB2 run-time services API calls.

v For the Java language, the SQLj translator converts SQLj clauses into JDBC
statements. The SQLj translator is invoked with the sqlj command.

When the precompiler processes a source file, it specifically looks for SQL
statements and avoids the non-SQL host language. It can find SQL statements
because they are surrounded by special delimiters. The examples in the
following table show how to use delimiters and comments to create valid
embedded SQL statements in the supported compiled host languages.

Table 3. Embedding SQL Statements in a Host Language

Language Sample Source Code

C/C++ /* Only C or C++ comments allowed here */
EXEC SQL

-- SQL comments or
/* C comments or */
// C++ comments allowed here
DECLARE C1 CURSOR FOR sname;

/* Only C or C++ comments allowed here */

SQLj /* Only Java comments allowed here */
#sql c1 = {

-- SQL comments or
/* Java comments or */
// Java comments allowed here
SELECT name FROM employee

};
/* Only Java comments allowed here */

72 Programming Client Applications

Table 3. Embedding SQL Statements in a Host Language (continued)

Language Sample Source Code

COBOL * See COBOL documentation for comment rules
* Only COBOL comments are allowed here
EXEC SQL

-- SQL comments or
* full-line COBOL comments are allowed here

DECLARE C1 CURSOR FOR sname END-EXEC.
* Only COBOL comments are allowed here

FORTRAN C Only FORTRAN comments are allowed here
EXEC SQL
+ -- SQL comments, and

C full-line FORTRAN comment are allowed here
+ DECLARE C1 CURSOR FOR sname
I=7 ! End of line FORTRAN comments allowed here

C Only FORTRAN comments are allowed here

Related concepts:

v “Embedded SQL in REXX Applications” on page 336
v “Embedded SQL Statements in C and C++” on page 167
v “Embedded SQL Statements in COBOL” on page 217
v “Embedded SQL Statements in FORTRAN” on page 242
v “Embedded SQL Statements in Java” on page 278

Source File Creation and Preparation

You can create the source code in a standard ASCII file, called a source file,
using a text editor. The source file must have the proper extension for the host
language in which you write your code.

Note: Not all platforms support all host languages.

For this discussion, assume that you have already written the source code.

If you have written your application using a compiled host language, you
must follow additional steps to build your application. Along with compiling
and linking your program, you must precompile and bind it.

Simply stated, precompiling converts embedded SQL statements into DB2
run-time API calls that a host compiler can process, and creates a bind file.
The bind file contains information on the SQL statements in the application
program. The BIND command creates a package in the database. Optionally, the
precompiler can perform the bind step at precompile time.

Chapter 3. Embedded SQL Overview 73

Binding is the process of creating a package from a bind file and storing it in a
database. If your application accesses more than one database, you must
create a package for each database.

The following figure shows the order of these steps, along with the various
modules of a typical compiled DB2 application.

74 Programming Client Applications

Related concepts:

v “Precompilation of Source Files Containing Embedded SQL” on page 78

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure 1. Preparing Programs Written in Compiled Host Languages

Chapter 3. Embedded SQL Overview 75

v “Source File Requirements for Embedded SQL Applications” on page 80
v “Compilation and Linkage of Source Files Containing Embedded SQL” on

page 81
v “Embedded SQL” on page 9

Related reference:

v “BIND” in the Command Reference

Packages, Binding, and Embedded SQL

The sections that follow describe how to create packages for embedded SQL
applications, as well as other topics, such as deferred binding and the
relationships between the application, the bind file, and the package.

Package Creation for Embedded SQL

To run applications written in compiled host languages, you must create the
packages needed by the database manager at execution time. This involves
the following steps as shown in the following figure:

76 Programming Client Applications

v Precompiling (step 2), to convert embedded SQL source statements into a
form the database manager can use,

Source Files

With SQL

Statements

Modified

Source Files

Object

Files

Source Files

Without SQL

Statements

Libraries

Precompiler

(db2 PREP)

PACKAGE

Create a

Package

Host Language Compiler

Host Language Linker

Executable

Program

Database Manager Package (Package)

Bind

File

Binder

(db2 BIND)

BINDFILE

Create a

Bind File

1

2

3

4

6

5

Figure 2. Preparing Programs Written in Compiled Host Languages

Chapter 3. Embedded SQL Overview 77

v Compiling and linking (steps 3 and 4), to create the required object
modules, and,

v Binding (step 5), to create the package to be used by the database manager
when the program is run.

Related concepts:

v “Precompilation of Source Files Containing Embedded SQL” on page 78
v “Source File Requirements for Embedded SQL Applications” on page 80
v “Compilation and Linkage of Source Files Containing Embedded SQL” on

page 81
v “Package Creation Using the BIND Command” on page 83
v “Package Versioning” on page 83
v “Effect of Special Registers on Bound Dynamic SQL” on page 85
v “Resolution of Unqualified Table Names” on page 85
v “Additional Considerations when Binding” on page 86
v “Advantages of Deferred Binding” on page 87
v “Application, Bind File, and Package Relationships” on page 88
v “Precompiler-Generated Timestamps” on page 88
v “Package Rebinding” on page 90
v “SQLj Translator Options” on page 284

Related reference:

v “db2bfd - Bind File Description Tool” in the Command Reference

Precompilation of Source Files Containing Embedded SQL

After you create the source files, you must precompile each host language file
containing SQL statements with the PREP command for host-language source
files. The precompiler converts SQL statements contained in the source file to
comments, and generates the DB2 run-time API calls for those statements.

Before precompiling an application you must connect to a server, either
implicitly or explicitly. Although you precompile application programs at the
client workstation and the precompiler generates modified source and
messages on the client, the precompiler uses the server connection to perform
some of the validation.

The precompiler also creates the information the database manager needs to
process the SQL statements against a database. This information is stored in a
package, in a bind file, or in both, depending on the precompiler options
selected.

78 Programming Client Applications

A typical example of using the precompiler follows. To precompile a C
embedded SQL source file called filename.sqc, you can issue the following
command to create a C source file with the default name filename.c and a
bind file with the default name filename.bnd:

DB2® PREP filename.sqc BINDFILE

The precompiler generates up to four types of output:

Modified Source
This file is the new version of the original source file after the
precompiler converts the SQL statements into DB2 run-time
API calls. It is given the appropriate host language extension.

Package If you use the PACKAGE option (the default), or do not
specify any of the BINDFILE, SYNTAX, or SQLFLAG options,
the package is stored in the connected database. The package
contains all the information required to execute the static SQL
statements of a particular source file against this database
only. Unless you specify a different name with the PACKAGE
USING option, the precompiler forms the package name from
the first 8 characters of the source file name.

If you use the PACKAGE option without SQLERROR
CONTINUE, the database used during the precompile process
must contain all of the database objects referenced by the
static SQL statements in the source file. For example, you
cannot precompile a SELECT statement unless the table it
references exists in the database.

With the VERSION option the bindfile, (if the BINDFILE
option is used), and the package (either if bound at PREP time
or if a bound separately) will be designated with a particular
version identifier. Many versions of packages with the same
name and creator can exit at once.

Bind File If you use the BINDFILE option, the precompiler creates a
bind file (with extension .bnd) that contains the data required
to create a package. This file can be used later with the BIND
command to bind the application to one or more databases. If
you specify BINDFILE and do not specify the PACKAGE
option, binding is deferred until you invoke the BIND
command. Note that for the command line processor (CLP),
the default for PREP does not specify the BINDFILE option.
Thus, if you are using the CLP and want the binding to be
deferred, you need to specify the BINDFILE option.

Specifying SQLERROR CONTINUE creates a package, even if
errors occur when binding SQL statements. Those statements
that fail to bind for authorization or existence reasons can be

Chapter 3. Embedded SQL Overview 79

incrementally bound at execution time if VALIDATE RUN is
also specified. Any attempt to execute them at run time
generates an error.

Message File If you use the MESSAGES option, the precompiler redirects
messages to the indicated file. These messages include
warnings and error messages that describe problems
encountered during precompilation. If the source file does not
precompile successfully, use the warning and error messages
to determine the problem, correct the source file, and then
attempt to precompile the source file again. If you do not use
the MESSAGES option, precompilation messages are written
to the standard output.

Related concepts:

v “Package Versioning” on page 83

Related reference:

v “PRECOMPILE” in the Command Reference

Source File Requirements for Embedded SQL Applications

You must always precompile a source file against a specific database, even if
eventually you do not use the database with the application. In practice, you
can use a test database for development, and after you fully test the
application, you can bind its bind file to one or more production databases.
This practice is known as deferred binding.

If your application uses a code page that is not the same as your database
code page, you need to consider which code page to use when precompiling.

If your application uses user-defined functions (UDFs) or user-defined distinct
types (UDTs), you may need to use the FUNCPATH option when you
precompile your application. This option specifies the function path that is
used to resolve UDFs and UDTs for applications containing static SQL. If
FUNCPATH is not specified, the default function path is SYSIBM, SYSFUN,
USER, where USER refers to the current user ID.

To precompile an application program that accesses more than one server, you
can do one of the following:
v Split the SQL statements for each database into separate source files. Do not

mix SQL statements for different databases in the same file. Each source file
can be precompiled against the appropriate database. This is the
recommended method.

v Code your application using dynamic SQL statements only, and bind
against each database your program will access.

80 Programming Client Applications

v If all the databases look the same, that is, they have the same definition,
you can group the SQL statements together into one source file.

The same procedures apply if your application will access a host, AS/400® or
iSeries application server through DB2 Connect. Precompile it against the
server to which it will be connecting, using the PREP options available for that
server.

If you are precompiling an application that will run on DB2 Universal
Database for OS/390 and z/OS, consider using the flagger facility to check
the syntax of the SQL statements. The flagger indicates SQL syntax that is
supported by DB2 Universal Database, but not supported by DB2 Universal
Database for OS/390 and z/OS. You can also use the flagger to check that
your SQL syntax conforms to the SQL92 Entry Level syntax. You can use the
SQLFLAG option on the PREP command to invoke it and to specify the
version of DB2 Universal Database for OS/390 and z/OS SQL syntax to be
used for comparison. The flagger facility will not enforce any changes in SQL
use; it only issues informational and warning messages regarding syntax
incompatibilities, and does not terminate preprocessing abnormally.

Related concepts:

v “Advantages of Deferred Binding” on page 87
v “Character Conversion Between Different Code Pages” on page 397
v “When Code Page Conversion Occurs” on page 397
v “Character Substitutions During Code Page Conversions” on page 398
v “Supported Code Page Conversions” on page 399
v “Code Page Conversion Expansion Factor” on page 400

Related reference:

v “PRECOMPILE” in the Command Reference

Compilation and Linkage of Source Files Containing Embedded SQL

Compile the modified source files and any additional source files that do not
contain SQL statements using the appropriate host language compiler. The
language compiler converts each modified source file into an object module.

Refer to the programming documentation for your operating platform for any
exceptions to the default compiler options. Refer to your compiler’s
documentation for a complete description of available compiler options.

The host language linker creates an executable application. For example:
v On Windows operating systems, the application can be an executable file or

a dynamic link library (DLL).

Chapter 3. Embedded SQL Overview 81

v On UNIX-based systems, the application can be an executable load module
or a shared library.

Note: Although applications can be DLLs on Windows® operating systems,
the DLLs are loaded directly by the application and not by the DB2®

database manager. On Windows operating systems, the database
manager can load DLLs. Stored procedures are normally built as DLLs
or shared libraries.

To create the executable file, link the following:
v User object modules, generated by the language compiler from the

modified source files and other files not containing SQL statements.
v Host language library APIs, supplied with the language compiler.
v The database manager library containing the database manager APIs for

your operating environment. Refer to the appropriate programming
documentation for your operating platform for the specific name of the
database manager library you need for your database manager APIs.

Related concepts:

v “DB2 Stored Procedures” on page 22

Related tasks:

v “Building and Running REXX Applications” on page 347
v “Building JDBC Applets” in the Application Development Guide: Building and

Running Applications

v “Building JDBC Applications” in the Application Development Guide: Building
and Running Applications

v “Building SQLJ Applets” in the Application Development Guide: Building and
Running Applications

v “Building SQLJ Applications” in the Application Development Guide: Building
and Running Applications

v “Building C Applications on AIX” in the Application Development Guide:
Building and Running Applications

v “Building C++ Applications on AIX” in the Application Development Guide:
Building and Running Applications

v “Building IBM COBOL Applications on AIX” in the Application Development
Guide: Building and Running Applications

v “Building Micro Focus COBOL Applications on AIX” in the Application
Development Guide: Building and Running Applications

82 Programming Client Applications

Package Creation Using the BIND Command

Binding is the process that creates the package the database manager needs to
access the database when the application is executed. Binding can be done
implicitly by specifying the PACKAGE option during precompilation, or
explicitly by using the BIND command against the bind file created during
precompilation.

A typical example of using the BIND command follows. To bind a bind file
named filename.bnd to the database, you can issue the following command:

DB2® BIND filename.bnd

One package is created for each separately precompiled source code module.
If an application has five source files, of which three require precompilation,
three packages or bind files are created. By default, each package is given a
name that is the same as the name of the source module from which the .bnd
file originated, but truncated to 8 characters. To explicitly specify a different
package name, you must use the PACKAGE USING option on the PREP
command. The version of a package is given by the VERSION precompile
option and defaults to the empty string. If the name and schema of this newly
created package is the same as a package that currently exists in the target
database, but the version identifier differs, a new package is created and the
previous package still remains. However if a package exists that matches the
name, schema and the version of the package being bound, then that package
is dropped and replaced with the new package being bound (specifying
ACTION ADD on the bind would prevent that and an error (SQL0719) would
be returned instead).

Related reference:

v “BIND” in the Command Reference

v “PRECOMPILE” in the Command Reference

Package Versioning

If you need to create multiple versions of an application, you can use the
VERSION option of the PRECOMPILE command. This option allows multiple
versions of the same package name (that is, the package name and creator
name) to coexist. For example, assume you have an application called foo,
which is compiled from foo.sqc. You would precompile and bind the package
foo to the database and deliver the application to the users. The users could
then run the application. To make subsequent changes to the application, you
would update foo.sqc, then repeat the process of recompiling, binding, and
sending the application to the users. If the VERSION option was not specified
for either the first or second precompilation of foo.sqc, the first package is

Chapter 3. Embedded SQL Overview 83

replaced by the second package. Any user who attempts to run the old
version of the application will receive the SQLCODE -818, indicating a
mismatched timestamp error.

To avoid the mismatched timestamp error and in order to allow both versions
of the application to run at the same time, use package versioning. As an
example, when you build the first version of foo, precompile it using the
VERSION option, as follows:

DB2® PREP FOO.SQC VERSION V1.1

This first version of the program may now be run. When you build the new
version of foo, precompile it with the command:

DB2 PREP FOO.SQC VERSION V1.2

At this point this new version of the application will also run, even if there
still are instances of the first application still executing. Because the package
version for the first package is V1.1 and the package version for the second is
V1.2, no naming confict exists: both packages will exist in the database and
both versions of the application can be used.

You can use the ACTION option of the PRECOMPILE or BIND commands in
conjunction with the VERSION option of the PRECOMPILE command. You
use the ACTION option to control the way in which different versions of
packages can be added or replaced.

Package privileges do not have granularity at the version level. That is, a
GRANT or a REVOKE of a package privilege applies to all versions of a
package that share the name and creator. So, if package privileges on package
foo were granted to a user or a group after version V1.1 was created, when
version V1.2 is distributed the user or group has the same privileges on
version V1.2. This behavior is usually required because typically the same
users and groups have the same privileges on all versions of a package. If you
do not want the same package privileges to apply to all versions of an
application, you should not use the PRECOMPILE VERSION option to
accomplish package versioning. Instead, you should use different package
names (either by renaming the updated source file, or by using the PACKAGE
USING option to explicitly rename the package).

Related concepts:

v “Precompiler-Generated Timestamps” on page 88

Related reference:

v “BIND” in the Command Reference

v “PRECOMPILE” in the Command Reference

84 Programming Client Applications

Effect of Special Registers on Bound Dynamic SQL

For dynamically prepared statements, the values of a number of special
registers determine the statement compilation environment:
v The CURRENT QUERY OPTIMIZATION special register determines which

optimization class is used.
v The CURRENT PATH special register determines the function path used for

UDF and UDT resolution.
v The CURRENT EXPLAIN SNAPSHOT register determines whether explain

snapshot information is captured.
v The CURRENT EXPLAIN MODE register determines whether explain table

information is captured for any eligible dynamic SQL statement. The
default values for these special registers are the same defaults used for the
related bind options.

Related reference:

v “CURRENT EXPLAIN MODE special register” in the SQL Reference, Volume
1

v “CURRENT EXPLAIN SNAPSHOT special register” in the SQL Reference,
Volume 1

v “CURRENT PATH special register” in the SQL Reference, Volume 1

v “CURRENT QUERY OPTIMIZATION special register” in the SQL Reference,
Volume 1

Resolution of Unqualified Table Names

You can handle unqualified table names in your application by using one of
the following methods:
v For each user, bind the package with different COLLECTION parameters

from different authorization identifiers by using the following commands:
CONNECT TO db_name USER user_name
BIND file_name COLLECTION schema_name

In the above example, db_name is the name of the database, user_name is the
name of the user, and file_name is the name of the application that will be
bound. Note that user_name and schema_name are usually the same value.
Then use the SET CURRENT PACKAGESET statement to specify which
package to use, and therefore, which qualifiers will be used. The default
qualifier is the authorization identifier that is used when binding the
package.

v Create views for each user with the same name as the table so the
unqualified table names resolve correctly.

v Create an alias for each user to point to the desired table.

Chapter 3. Embedded SQL Overview 85

Related reference:

v “SET CURRENT PACKAGESET statement” in the SQL Reference, Volume 2

v “BIND” in the Command Reference

Additional Considerations when Binding

If your application code page uses a different code page from your database
code page, you may need to consider which code page to use when binding.

If your application issues calls to any of the database manager utility APIs,
such as IMPORT or EXPORT, you must bind the supplied utility bind files to
the database.

You can use bind options to control certain operations that occur during
binding, as in the following examples:
v The QUERYOPT bind option takes advantage of a specific optimization

class when binding.
v The EXPLSNAP bind option stores Explain Snapshot information for

eligible SQL statements in the Explain tables.
v The FUNCPATH bind option properly resolves user-defined distinct types

and user-defined functions in static SQL.

If the bind process starts but never returns, it may be that other applications
connected to the database hold locks that you require. In this case, ensure that
no applications are connected to the database. If they are, disconnect all
applications on the server and the bind process will continue.

If your application will access a server using DB2 Connect, you can use the
BIND options available for that server.

Bind files are not backward compatible with previous versions of DB2
Universal Database. In mixed-level environments, DB2® can only use the
functions available to the lowest level of the database environment. For
example, if a V8 client connects to a V7.2 server, the client will only be able to
use V7.2 functions. As bind files express the functionality of the database, they
are subject to the mixed-level restriction.

If you need to rebind higher-level bind files on lower-level systems, you can:
v Use a lower-level DB2 Application Development Client to connect to the

higher-level server and create bind files which can be shipped and bound
to the lower-level DB2 Universal Database environment.

v Use a higher-level DB2 client in the lower-level production environment to
bind the higher-level bind files that were created in the test environment.
The higher-level client passes only the options that apply to the lower-level
server.

86 Programming Client Applications

Related concepts:

v “Binding utilities to the database” in the Administration Guide:
Implementation

v “Character Conversion Between Different Code Pages” on page 397
v “Character Substitutions During Code Page Conversions” on page 398
v “Code Page Conversion Expansion Factor” on page 400

Related reference:

v “BIND” in the Command Reference

Advantages of Deferred Binding

Precompiling with binding enabled allows an application to access only the
database used during the precompile process. Precompiling with binding
deferred, however, allows an application to access many databases, because
you can bind the BIND file against each one. This method of application
development is inherently more flexible in that applications are precompiled
only once, but the application can be bound to a database at any time.

Using the BIND API during execution allows an application to bind itself,
perhaps as part of an installation procedure or before an associated module is
executed. For example, an application can perform several tasks, only one of
which requires the use of SQL statements. You can design the application to
bind itself to a database only when the application calls the task requiring
SQL statements, and only if an associated package does not already exist.

Another advantage of the deferred binding method is that it lets you create
packages without providing source code to end users. You can ship the
associated bind files with the application.

Related reference:

v “sqlabndx - Bind” in the Administrative API Reference

Bind File Contents

With the DB2® Bind File Description (db2bfd) utility, you can easily display
the contents of a bind file to examine and verify the SQL statements within it,
as well as display the precompile options used to create the bind file. This
may be useful in problem determination related to your application’s bind
file.

Related reference:

v “db2bfd - Bind File Description Tool” in the Command Reference

Chapter 3. Embedded SQL Overview 87

Application, Bind File, and Package Relationships

A package is an object stored in the database that includes information
needed to execute specific SQL statements in a single source file. A database
application uses one package for every precompiled source file used to build
the application. Each package is a separate entity, and has no relationship to
any other packages used by the same or other applications. Packages are
created by running the precompiler against a source file with binding enabled,
or by running the binder at a later time with one or more bind files.

Database applications use packages for some of the same reasons that
applications are compiled: improved performance and compactness. By
precompiling an SQL statement, the statement is compiled into the package
when the application is built, instead of at run time. Each statement is parsed,
and a more efficiently interpreted operand string is stored in the package. At
run time, the code generated by the precompiler calls run-time services
database manager APIs with any variable information required for input or
output data, and the information stored in the package is executed.

The advantages of precompilation apply only to static SQL statements. SQL
statements that are executed dynamically (using PREPARE and EXECUTE or
EXECUTE IMMEDIATE) are not precompiled; therefore, they must go through
the entire set of processing steps at run time.

Note: Do not assume that a static version of an SQL statement automatically
executes faster than the same statement processed dynamically. In some
cases, static SQL is faster because of the overhead required to prepare
the dynamic statement. In other cases, the same statement prepared
dynamically executes faster, because the optimizer can make use of
current database statistics, rather than the database statistics available
at an earlier bind time. Note that if your transaction takes less than a
couple of seconds to complete, static SQL will generally be faster. To
choose which method to use, you should prototype both forms of
binding.

Related concepts:

v “Dynamic SQL Versus Static SQL” on page 129

Precompiler-Generated Timestamps

When generating a package or a bind file, the precompiler generates a
timestamp. The timestamp is stored in the bind file or package and in the
modified source file. The timestamp is also known as the consistency token.

When an application is precompiled with binding enabled, the package and
modified source file are generated with timestamps that match. If multiple

88 Programming Client Applications

versions of a package exist (by using the PRECOMPILE VERSION option),
each version will have with it an associated timestamp. When the application
is run, the package name, creator and timestamp are sent to the database
manager, which checks for a package whose name, creator and timestamp
match that sent by the application. If such a match does not exist, one of the
two following SQL error codes is returned to the application:
v SQL0818N (timestamp conflict). This error is returned if a single package is

found that matches the name and creator (but not the consistency token),
and the package has a version of ″″ (an empty string)

v SQL0805N (package not found). This error is returned in all other
situations.

Remember that when you bind an application to a database, the first eight
characters of the application name are used as the package name unless you
override the default by using the PACKAGE USING option on the PREP command.
As well the version ID will be ″″ (an empty string) unless it is specified by the
VERSION option of the PREP command. This means that if you precompile
and bind two programs using the same name without changing the version
ID, the second package will replace the package of the first. When you run
the first program, you will get a timestamp or a package not found error
because the timestamp for the modified source file no longer matches that of
the package in the database. The package not found error can also result from
the use of the ACTION REPLACE REPLVER precompile or bind option as in
the following example:
1. Precompile and bind the package SCHEMA1.PKG specifying VERSION

VER1. Then generate the associated application A1.
2. Precompile and bind the package SCHEMA1.PKG, specifying VERSION

VER2 ACTION REPLACE REPLVER VER1. Then generate the associated
application A2.
The second precompile and bind generates a package SCHEMA1.PKG that
has a VERSION of VER2, and the specification of ACTION REPLACE
REPLVER VER1 removes the SCHEMA1.PKG package that had a
VERSION of VER1.
An attempt to run the first application will result in a package mismatch
and will fail.

A similar symptom will occur in the following example:
1. Precompile and bind teh package SCHEMA1.PKG, specifying VERSION

VER1. Then generate the associated application A1
2. Precompile and bind the package SCHEMA1.PKG, specifying VERSION

VER2. Then generate the associated application A2
At this point it is possible to run both applications A1 and A2, which will
execute from packages SCHEMA1.PKG versions VER1 and VER2
respectively. If, for example, the first package is dropped (using the DROP

Chapter 3. Embedded SQL Overview 89

PACKAGE SCHEMA1.PKG VERSION VER1 SQL statement), an attempt to
run the application A1 will fail with a package not found error.

When a source file is precompiled but a respective package is not created, a
bind file and modified source file are generated with matching timestamps. To
run the application, the bind file is bound in a separate BIND step to create a
package and the modified source file is compiled and linked. For an
application that requires multiple source modules, the binding process must
be done for each bind file.

In this deferred binding scenario, the application and package timestamps
match because the bind file contains the same timestamp as the one that was
stored in the modified source file during precompilation.

Related concepts:

v “Package Creation Using the BIND Command” on page 83

Package Rebinding

Rebinding is the process of recreating a package for an application program
that was previously bound. You must rebind packages if they have been
marked invalid or inoperative. In some situations, however, you may want to
rebind packages that are valid. For example, you may want to take advantage
of a newly created index, or make use of updated statistics after executing the
RUNSTATS command.

Packages can be dependent on certain types of database objects such as tables,
views, aliases, indexes, triggers, referential constraints and table check
constraints. If a package is dependent on a database object (such as a table,
view, trigger, and so on), and that object is dropped, the package is placed
into an invalid state. If the object that is dropped is a UDF, the package is
placed into an inoperative state.

Invalid packages are implicitly (or automatically) rebound by the database
manager when they are executed. Inoperative packages must be explicitly
rebound by executing either the BIND command or the REBIND command. Note
that implicit rebinding can cause unexpected errors if the implicit rebind fails.
That is, the implicit rebind error is returned on the statement being executed,
which may not be the statement that is actually in error. If an attempt is made
to execute an inoperative package, an error occurs. You may decide to
explicitly rebind invalid packages rather than have the system automatically
rebind them. This enables you to control when the rebinding occurs.

The choice of which command to use to explicitly rebind a package depends
on the circumstances. You must use the BIND command to rebind a package
for a program which has been modified to include more, fewer, or changed

90 Programming Client Applications

SQL statements. You must also use the BIND command if you need to change
any bind options from the values with which the package was originally
bound. In all other cases, use either the BIND or REBIND command. You should
use REBIND whenever your situation does not specifically require the use of
BIND, as the performance of REBIND is significantly better than that of BIND.

When multiple versions of the same package name coexist in the catalog, only
one version at a time can be rebound.

Related concepts:

v “Statement dependencies when changing objects” in the Administration
Guide: Implementation

Related reference:

v “BIND” in the Command Reference

v “REBIND” in the Command Reference

Chapter 3. Embedded SQL Overview 91

92 Programming Client Applications

Chapter 4. Writing Static SQL Programs

Characteristics and Reasons for Using Static
SQL. 93
Advantages of Static SQL 94
Example Static SQL Program 95
Data Retrieval in Static SQL Programs . . . 97
Host Variables in Static SQL Programs . . . 97

Host Variables in Static SQL 97
Declaring Host Variables in Static SQL
Programs 99
Referencing Host Variables in Static SQL
Programs 101

Indicator Variables in Static SQL Programs 101
Including Indicator Variables in Static
SQL Programs 101
Data Types for Indicator Variables in
Static SQL Programs 104
Example of an Indicator Variable in a
Static SQL Program 106

Selecting Multiple Rows Using a Cursor . . 108
Selecting Multiple Rows Using a Cursor 108
Declaring and Using Cursors in Static
SQL Programs 109
Cursor Types and Unit of Work
Considerations 110
Example of a Cursor in a Static SQL
Program 112

Manipulating Retrieved Data 113

Updating and Deleting Retrieved Data in
Static SQL Programs 114
Cursor Types 114
Example of a Fetch in a Static SQL
Program 115

Scrolling Through and Manipulating
Retrieved Data 117

Scrolling Through Previously Retrieved
Data 117
Keeping a Copy of the Data 117
Retrieving Data a Second Time 118
Row Order Differences Between the First
and Second Result Table 119
Positioning a Cursor at the End of a Table 120
Updating Previously Retrieved Data . . 121
Example of an Insert, Update, and Delete
in a Static SQL Program. 121

Diagnostic Information 123
Return Codes 123
Error Information in the SQLCODE,
SQLSTATE, and SQLWARN Fields . . . 123
Token Truncation in the SQLCA Structure 124
Exception, Signal, and Interrupt Handler
Considerations 125
Exit List Routine Considerations 125
Error Message Retrieval in an Application 126

Characteristics and Reasons for Using Static SQL

When the syntax of embedded SQL statements is fully known at precompile
time, the statements are referred to as static SQL. This is in contrast to dynamic
SQL statements whose syntax is not known until run time.

Note: Static SQL is not supported in interpreted languages, such as REXX.

The structure of an SQL statement must be completely specified for a
statement to be considered static. For example, the names for the columns and
tables referenced in a statement must be fully known at precompile time. The
only information that can be specified at run time are values for any host
variables referenced by the statement. However, host variable information,
such as data types, must still be precompiled.

© Copyright IBM Corp. 1993-2002 93

When a static SQL statement is prepared, an executable form of the statement
is created and stored in the package in the database. The executable form can
be constructed either at precompile time, or at a later bind time. In either case,
preparation occurs before run time. The authorization of the person binding
the application is used, and optimization is based upon database statistics and
configuration parameters that may not be current when the application runs.

Advantages of Static SQL

Programming using static SQL requires less effort than using embedded
dynamic SQL. Static SQL statements are simply embedded into the host
language source file, and the precompiler handles the necessary conversion to
database manager run-time services API calls that the host language compiler
can process.

Because the authorization of the person binding the application is used, the
end user does not require direct privileges to execute the statements in the
package. For example, an application could allow a user to update parts of a
table without granting an update privilege on the entire table. This can be
achieved by restricting the static SQL statements to allow updates only to
certain columns or to a range of values.

Static SQL statements are persistent, meaning that the statements last for as
long as the package exists.

Dynamic SQL statements are cached until they are either invalidated, freed for
space management reasons, or the database is shut down. If required, the
dynamic SQL statements are recompiled implicitly by the DB2® SQL compiler
whenever a cached statement becomes invalid.

The key advantage of static SQL, with respect to persistence, is that the static
statements exist after a particular database is shut down, whereas dynamic
SQL statements cease to exist when this occurs. In addition, static SQL does
not have to be compiled by the DB2 SQL compiler at run time, while dynamic
SQL must be explicitly compiled at run time (for example, by using the
PREPARE statement). Because DB2 caches dynamic SQL statements, the
statements do not need to be compiled often by DB2, but they must be
compiled at least once when you execute the application.

There can be performance advantages to static SQL. For simple, short-running
SQL programs, a static SQL statement executes faster than the same statement
processed dynamically because the overhead of preparing an executable form
of the statement is done at precompile time instead of at run time.

94 Programming Client Applications

Note: The performance of static SQL depends on the statistics of the database
the last time the application was bound. However, if these statistics
change, the performance of equivalent dynamic SQL can be very
different. If, for example, an index is added to a database at a later
time, an application using static SQL cannot take advantage of the
index unless it is rebound to the database. In addition, if you are using
host variables in a static SQL statement, the optimizer will not be able
to take advantage of any distribution statistics for the table.

Related reference:

v “EXECUTE statement” in the SQL Reference, Volume 2

Example Static SQL Program

This sample program shows examples of static SQL statements and database
manager API calls in the C/C++, Java, and COBOL languages.

The sample in C/C++ and Java™ queries the org table in the sample database
to find the department name and department number of the department that
is located in New York, then places the department name and department
number into host variables.

The sample in COBOL queries the employee table in the sample database for
the first name of the employee whose last name is Johnson, then place the
first name into a host variable.

Note: The REXX language does not support static SQL, so a sample is not
provided.

v C/C++ (tbread)
SELECT deptnumb, deptname INTO :deptnumb, :deptname
FROM org
WHERE location = ’New York’

This query is in the TbRowSubselect() function of the sample. For more
information, see the related samples below.

v Java (TbRead.sqlj)
#sql cur2 = {SELECT deptnumb, deptname
FROM org
WHERE location = ’New York’};

// fetch the cursor
#sql {FETCH :cur2 INTO :deptnumb, :deptname};

This query is in the rowSubselect() function of the TbRead.sqlj sample.
For more information, see the related samples below.

v COBOL (static.sqb)

Chapter 4. Writing Static SQL Programs 95

The sample static contains examples of static SQL statements and database
manager API calls in the COBOL language. The SELECT INTO statement
selects one row of data from tables in a database, and the values in this row
are assigned to host variables specified in the statement. For example, the
following statement delivers the first name of the employee with the last
name JOHNSON into the host variable firstname:
SELECT FIRSTNME
INTO :firstname
FROM EMPLOYEE
WHERE LASTNAME = ’JOHNSON’

Related concepts:

v “Data Retrieval in Static SQL Programs” on page 97
v “Error Message Retrieval in an Application” on page 126

Related tasks:

v “Declaring Host Variables in Static SQL Programs” on page 99
v “Selecting Multiple Rows Using a Cursor” on page 108
v “Setting Up the sample Database” in the Application Development Guide:

Building and Running Applications

Related reference:

v “SELECT INTO statement” in the SQL Reference, Volume 2

Related samples:

v “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”
v “tbinfo.out -- HOW TO GET INFORMATION AT THE TABLE LEVEL (C)”
v “tbread.out -- HOW TO READ TABLES (C)”
v “tbread.sqc -- How to read tables (C)”
v “dtlob.sqC -- How to use the LOB data type (C++)”
v “tbinfo.sqC -- How to get information at the table level (C++)”
v “tbread.out -- HOW TO READ TABLES (C++)”
v “tbread.sqC -- How to read tables (C++)”
v “static.sqb -- Get table data using static SQL statement (IBM COBOL)”
v “static.sqb -- Get table data using static SQL statement (MF COBOL)”
v “TbRead.out -- HOW TO READ TABLE DATA (JDBC)”
v “TbRead.sqlj -- How to read table data (SQLj)”

96 Programming Client Applications

Data Retrieval in Static SQL Programs

One of the most common tasks of an SQL application program is to retrieve
data. This task is done using the select-statement, which is a form of query that
searches for rows of tables in the database that meet specified search
conditions. If such rows exist, the data is retrieved and put into specified
variables in the host program, where it can be used for whatever it was
designed to do.

After you have written a select-statement, you code the SQL statements that
define how information will be passed to your application.

You can think of the result of a select-statement as being a table having rows
and columns, much like a table in the database. If only one row is returned,
you can deliver the results directly into host variables specified by the
SELECT INTO statement.

If more than one row is returned, you must use a cursor to fetch them one at a
time. A cursor is a named control structure used by an application program to
point to a specific row within an ordered set of rows.

Related concepts:

v “Host Variables in Static SQL” on page 97
v “Example of a Cursor in a Static SQL Program” on page 112

Related tasks:

v “Declaring Host Variables in Static SQL Programs” on page 99
v “Referencing Host Variables in Static SQL Programs” on page 101
v “Including Indicator Variables in Static SQL Programs” on page 101
v “Selecting Multiple Rows Using a Cursor” on page 108
v “Declaring and Using Cursors in Static SQL Programs” on page 109

Host Variables in Static SQL Programs

The sections that follow describe how to use host variables in static SQL
programs.

Host Variables in Static SQL

Host variables are variables referenced by embedded SQL statements. They
transmit data between the database manager and an application program.
When you use a host variable in an SQL statement, you must prefix its name
with a colon, (:). When you use a host variable in a host language statement,
omit the colon.

Chapter 4. Writing Static SQL Programs 97

Host variables are declared in compiled host languages, and are delimited by
BEGIN DECLARE SECTION and END DECLARE SECTION statements.
These statements enable the precompiler to find the declarations.

Note: Java™ JDBC and SQLj programs do not use declare sections. Host
variables in Java follow the normal Java variable declaration syntax.

Host variables are declared using a subset of the host language.

The following rules apply to host variable declaration sections:
v All host variables must be declared in the source file before they are

referenced, except for host variables referring to SQLDA structures.
v Multiple declare sections may be used in one source file.
v The precompiler is unaware of host language variable scoping rules.

With respect to SQL statements, all host variables have a global scope
regardless of where they are actually declared in a single source file.
Therefore, host variable names must be unique within a source file.
This does not mean that the DB2® precompiler changes the scope of host
variables to global so that they can be accessed outside the scope in which
they are defined. Consider the following example:
foo1(){

.

.

.
BEGIN SQL DECLARE SECTION;
int x;
END SQL DECLARE SECTION;

x=10;
.
.
.

}

foo2(){
.
.
.
y=x;
.
.
.

}

Depending on the language, the above example will either fail to compile
because variable x is not declared in function foo2(), or the value of x

98 Programming Client Applications

would not be set to 10 in foo2(). To avoid this problem, you must either
declare x as a global variable, or pass x as a parameter to function foo2()
as follows:
foo1(){
.
.
.

BEGIN SQL DECLARE SECTION;
int x;
END SQL DECLARE SECTION;
x=10;
foo2(x);

.

.

.
}

foo2(int x){
.
.
.

y=x;
.
.
.
}

Related concepts:

v “Host Variables in C and C++” on page 169
v “Host Variables in COBOL” on page 219
v “Host Variables in FORTRAN” on page 244
v “Host Variables in Java” on page 263
v “Host Variables in REXX” on page 338

Related tasks:

v “Declaring Host Variables with the db2dclgn Declaration Generator” on
page 35

v “Declaring Host Variables in Static SQL Programs” on page 99
v “Referencing Host Variables in Static SQL Programs” on page 101

Declaring Host Variables in Static SQL Programs

Declare host variables for your program so that they can be used to transmit
data between the database manager and the appplication.

Procedure:

Chapter 4. Writing Static SQL Programs 99

Declare the host variables using the syntax for the host language that you are
using. The following table provides examples.

Table 4. Host Variable Declarations by Host Language

Language Example Source Code

C/C++ EXEC SQL BEGIN DECLARE SECTION;
short dept=38, age=26;
double salary;
char CH;
char name1[9], NAME2[9];
/* C comment */
short nul_ind;

EXEC SQL END DECLARE SECTION;

Java // Note that Java host variable declarations follow
// normal Java variable declaration rules, and have
// no equivalent of a DECLARE SECTION

short dept=38, age=26;
double salary;
char CH;
String name1[9], NAME2[9];
/* Java comment */
short nul_ind;

COBOL EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 age PIC S9(4) COMP-5 VALUE 26.
01 DEPT PIC S9(9) COMP-5 VALUE 38.
01 salary PIC S9(6)V9(3) COMP-3.
01 CH PIC X(1).
01 name1 PIC X(8).
01 NAME2 PIC X(8).

* COBOL comment
01 nul-ind PIC S9(4) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.

FORTRAN EXEC SQL BEGIN DECLARE SECTION
integer*2 age /26/
integer*4 dept /38/
real*8 salary
character ch
character*8 name1,NAME2

C FORTRAN comment
integer*2 nul_ind

EXEC SQL END DECLARE SECTION

Related tasks:

v “Declaring Host Variables with the db2dclgn Declaration Generator” on
page 35

v “Referencing Host Variables in Static SQL Programs” on page 101

100 Programming Client Applications

Referencing Host Variables in Static SQL Programs

After declaring the host variable, you can reference it in the application
program. When you use a host variable in an SQL statement, prefix its name
with a colon (:). If you use a host variable in a host language statement, omit
the colon.

Procedure:

Reference the host variables using the syntax for the host language that you
are using. The following table provides examples.

Table 5. Host Variable Refrerences by Host Language

Language Example Source Code

C/C++ EXEC SQL FETCH C1 INTO :cm;
printf("Commission = %f\n", cm);

JAVA (SQLj) #SQL { FETCH :c1 INTO :cm };
System.out.println("Commission = " + cm);

COBOL EXEC SQL FETCH C1 INTO :cm END-EXEC
DISPLAY ’Commission = ’ cm

FORTRAN EXEC SQL FETCH C1 INTO :cm
WRITE(*,*) ’Commission = ’, cm

Related tasks:

v “Declaring Host Variables with the db2dclgn Declaration Generator” on
page 35

v “Declaring Host Variables in Static SQL Programs” on page 99

Indicator Variables in Static SQL Programs

The sections that follow describe how to use indicator variables in static SQL
programs.

Including Indicator Variables in Static SQL Programs

Applications written in languages other than Java must prepare for receiving
null values by associating an indicator variable with any host variable that can
receive a null. Java applications compare the value of the host variable with
Java null to determine whether the received value is null. An indicator
variable is shared by both the database manager and the host application;
therefore, the indicator variable must be declared in the application as a host
variable. This host variable corresponds to the SQL data type SMALLINT.

Chapter 4. Writing Static SQL Programs 101

An indicator variable is placed in an SQL statement immediately after the
host variable, and is prefixed with a colon. A space can separate the indicator
variable from the host variable, but is not required. However, do not put a
comma between the host variable and the indicator variable. You can also
specify an indicator variable by using the optional INDICATOR keyword,
which you place between the host variable and its indicator.

Procedure:

Use the INDICATOR keyword to write indicator variables. The following
table provides examples for the supported host languages:

Table 6. Indicator Variables by Host Language

Language Example Source Code

C/C++ EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind;
if (cmind < 0)

printf("Commission is NULL\n");

JAVA (SQLj) #SQL { FETCH :c1 INTO :cm };
if (cm == null)

System.out.println("Commission is NULL\n");

COBOL EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind END-EXEC
IF cmind LESS THAN 0

DISPLAY ’Commission is NULL’

FORTRAN EXEC SQL FETCH C1 INTO :cm INDICATOR :cmind
IF (cmind .LT. 0) THEN

WRITE(*,*) ’Commission is NULL’
ENDIF

In the preceding examples, cmind is examined for a negative value. If the
value is not negative, the application can use the returned value of cm. If the
value is negative, the fetched value is NULL and cm should not be used. The
database manager does not change the value of the host variable in this case.

Note: If the database configuration parameter dft_sqlmathwarn is set to ’YES’,
the value of cmind may be -2. This value indicates a NULL that was
either caused by evaluating an expression with an arithmetic error, or
by an overflow while attempting to convert the numeric result value to
the host variable.

If the data type can handle NULLs, the application must provide a NULL
indicator. Otherwise, an error may occur. If a NULL indicator is not used, an
SQLCODE -305 (SQLSTATE 22002) is returned.

102 Programming Client Applications

If the SQLCA structure indicates a truncation warning, the indicator variables
can be examined for truncation. If an indicator variable has a positive value, a
truncation occurred.
v If the seconds portion of a TIME data type is truncated, the indicator value

contains the seconds portion of the truncated data.
v For all other string data types, except large objects (LOB), the indicator

value represents the actual length of the data returned. User-defined
distinct types (UDT) are handled in the same way as their base type.

When processing INSERT or UPDATE statements, the database manager
checks the indicator variable if one exists. If the indicator variable is negative,
the database manager sets the target column value to NULL if NULLs are
allowed.

If the indicator variable is zero or positive, the database manager uses the
value of the associated host variable.

The SQLWARN1 field in the SQLCA structure may contain an X or W if the
value of a string column is truncated when it is assigned to a host variable.
The field contains an N if a null terminator is truncated.

A value of X is returned by the database manager only if all of the following
conditions are met:
v A mixed code page connection exists where conversion of character string

data from the database code page to the application code page involves a
change in the length of the data.

v A cursor is blocked.
v An indicator variable is provided by your application.

The value returned in the indicator variable will be the length of the resultant
character string in the application’s code page.

In all other cases involving data truncation (as opposed to NULL terminator
truncation), the database manager returns a W. In this case, the database
manager returns a value in the indicator variable to the application that is the
length of the resultant character string in the code page of the select list item
(either the application code page, the database code page, or nothing).

Related tasks:

v “Declaring Host Variables with the db2dclgn Declaration Generator” on
page 35

v “Declaring Host Variables in Static SQL Programs” on page 99
v “Referencing Host Variables in Static SQL Programs” on page 101

Chapter 4. Writing Static SQL Programs 103

Related reference:

v “Data Types for Indicator Variables in Static SQL Programs” on page 104

Data Types for Indicator Variables in Static SQL Programs

Each column of every DB2 table is given an SQL data type when the column is
created. For information about how these types are assigned to columns, see
the CREATE TABLE statement. The database manager supports the following
column data types:

SMALLINT
16-bit signed integer.

INTEGER
32-bit signed integer. INT can be used as a synonym for this type.

BIGINT
64-bit signed integer.

DOUBLE
Double-precision floating point. DOUBLE PRECISION and FLOAT(n)
(where n is greater than 24) are synonyms for this type.

REAL Single-precision floating point. FLOAT(n) (where n is less than 24) is a
synonym for this type.

DECIMAL
Packed decimal. DEC, NUMERIC, and NUM are synonyms for this
type.

CHAR
Fixed-length character string of length 1 byte to 254 bytes.
CHARACTER can be used as a synonym for this type.

VARCHAR
Variable-length character string of length 1 byte to 32 672 bytes.
CHARACTER VARYING and CHAR VARYING are synonyms for
this type.

LONG VARCHAR
Long variable-length character string of length 1 byte to 32 700 bytes.

CLOB Large object variable-length character string of length 1 byte to 2
gigabytes.

BLOB Large object variable-length binary string of length 1 byte to 2
gigabytes.

DATE Character string of length 10 representing a date.

TIME Character string of length 8 representing a time.

104 Programming Client Applications

TIMESTAMP
Character string of length 26 representing a timestamp.

The following data types are supported only in double-byte character set
(DBCS) and Extended UNIX Code (EUC) character set environments:

GRAPHIC
Fixed-length graphic string of length 1 to 127 double-byte characters.

VARGRAPHIC
Variable-length graphic string of length 1 to 16 336 double-byte
characters.

LONG VARGRAPHIC
Long variable-length graphic string of length 1 to 16 350 double-byte
characters.

DBCLOB
Large object variable-length graphic string of length 1 to 1 073 741 823
double-byte characters.

Notes:

1. Every supported data type can have the NOT NULL attribute. This is
treated as another type.

2. The above set of data types can be extended by defining user-defined
distinct types (UDT). UDTs are separate data types that use the
representation of one of the built-in SQL types.

Supported host languages have data types that correspond to the majority of
the database manager data types. Only these host language data types can be
used in host variable declarations. When the precompiler finds a host variable
declaration, it determines the appropriate SQL data type value. The database
manager uses this value to convert the data exchanged between itself and the
application.

As the application programmer, it is important for you to understand how the
database manager handles comparisons and assignments between different
data types. Simply put, data types must be compatible with each other during
assignment and comparison operations, whether the database manager is
working with two SQL column data types, two host-language data types, or
one of each.

The general rule for data type compatibility is that all supported host-language
numeric data types are comparable and assignable with all database manager
numeric data types, and all host-language character types are compatible with
all database manager character types; numeric types are incompatible with

Chapter 4. Writing Static SQL Programs 105

character types. However, there are also some exceptions to this general rule,
depending on host language idiosyncrasies and limitations imposed when
working with large objects.

Within SQL statements, DB2 provides conversions between compatible data
types. For example, in the following SELECT statement, SALARY and BONUS
are DECIMAL columns; however, each employee’s total compensation is
returned as DOUBLE data:

SELECT EMPNO, DOUBLE(SALARY+BONUS) FROM EMPLOYEE

Note that the execution of the above statement includes conversion between
DECIMAL and DOUBLE data types.

To make the query results more readable on your screen, you could use the
following SELECT statement:

SELECT EMPNO, DIGIT(SALARY+BONUS) FROM EMPLOYEE

To convert data within your application, contact your compiler vendor for
additional routines, classes, built-in types, or APIs that support this
conversion.

If your application code page is not the same as your database code page,
character data types may also be subject to character conversion.

Related concepts:

v “Data Conversion Considerations” in the Application Development Guide:
Programming Server Applications

v “Character Conversion Between Different Code Pages” on page 397

Related reference:

v “CREATE TABLE statement” in the SQL Reference, Volume 2

v “Supported SQL Data Types in C and C++” on page 200
v “Supported SQL Data Types in COBOL” on page 231
v “Supported SQL Data Types in FORTRAN” on page 251
v “Supported SQL Data Types in Java” on page 264
v “Supported SQL Data Types in REXX” on page 345

Example of an Indicator Variable in a Static SQL Program

Following are examples of how to use indicator variables C/C++ programs
that use have static SQL:
v Example 1

106 Programming Client Applications

The following example show the implementation of indicator variables on
data columns that are nullable. In this example, the column FIRSTNAME is
not nullable, but the column WORKDEPT can contain a null value.
EXEC SQL BEGIN DECLARE SECTION;

char wd[3];
short wd_ind;
char firstname[13];

EXEC SQL END DECLARE SECTION;

/* connect to sample database */

EXEC SQL SELECT FIRSTNME, WORKDEPT
INTO :firstname, :wd:wdind
FROM EMPLOYEE
WHERE LASTNAME = ’JOHNSON’;

Because the column WORKDEPT can have a null value, an indicator
variable must be declared as a host variable before being used.

v Example 2 (dtlob)
The sample dtlob has a function called BlobFileUse(). The function
BlobFileUse() contains a query that reads BLOB data in a file using a
SELECT INTO statement:
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS BLOB_FILE blobFilePhoto;
char photoFormat[10];
char empno[7];
short lobind;

EXEC SQL END DECLARE SECTION;

/* Connect to the sample database */

SELECT picture INTO :blobFilePhoto:lobind
FROM emp_photo
WHERE photo_format = :photoFormat AND empno = ’000130’

Because the column BLOBFILEPHOTO can have a null value, an indicator
variable LOBIND must be declared as a host variable before being used.
The sample dtlob shows how to work with LOBs. See the samples for more
information about using LOBs.

Related concepts:

v “Example Static SQL Program” on page 95

Related tasks:

v “Including Indicator Variables in Static SQL Programs” on page 101

Related reference:

v “Data Types for Indicator Variables in Static SQL Programs” on page 104

Chapter 4. Writing Static SQL Programs 107

Related samples:

v “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C)”
v “dtlob.sqc -- How to use the LOB data type (C)”
v “dtlob.out -- HOW TO USE THE LOB DATA TYPE (C++)”
v “dtlob.sqC -- How to use the LOB data type (C++)”

Selecting Multiple Rows Using a Cursor

The sections that follow describe how to select rows using a cursor. The
sample programs that show how to declare a cursor, open the cursor, fetch
rows from the table, and close the cursor are also briefly described.

Selecting Multiple Rows Using a Cursor

To allow an application to retrieve a set of rows, SQL uses a mechanism called
a cursor.

To help understand the concept of a cursor, assume that the database manager
builds a result table to hold all the rows retrieved by executing a SELECT
statement. A cursor makes rows from the result table available to an
application by identifying or pointing to a current row of this table. When a
cursor is used, an application can retrieve each row sequentially from the
result table until an end of data condition, that is, the NOT FOUND
condition, SQLCODE +100 (SQLSTATE 02000) is reached. The set of rows
obtained as a result of executing the SELECT statement can consist of zero,
one, or more rows, depending on the number of rows that satisfy the search
condition.

Procedure:

The steps involved in processing a cursor are as follows:
1. Specify the cursor using a DECLARE CURSOR statement.
2. Perform the query and build the result table using the OPEN statement.
3. Retrieve rows one at a time using the FETCH statement.
4. Process rows with the DELETE or UPDATE statements (if required).
5. Terminate the cursor using the CLOSE statement.

An application can use several cursors concurrently. Each cursor requires its
own set of DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.

Related concepts:

v “Example of a Cursor in a Static SQL Program” on page 112

108 Programming Client Applications

Declaring and Using Cursors in Static SQL Programs

Use the DECLARE CURSOR statement to define and name the cursor, and to
identify the set of rows to be retrieved using a SELECT statement.

The application assigns a name for the cursor. This name is referred to in
subsequent OPEN, FETCH, and CLOSE statements. The query is any valid
select statement.

Restrictions:

The placement of the DECLARE statement is arbitrary, but it must be placed
above the first use of the cursor.

Procedure:

Use the DECLARE statement to define the cursor. The following table
provides examples for the supported host languages:

Table 7. Cursor Declarations by Host Language

Language Example Source Code

C/C++ EXEC SQL DECLARE C1 CURSOR FOR
SELECT PNAME, DEPT FROM STAFF
WHERE JOB=:host_var;

JAVA (SQLj) #sql iterator cursor1(host_var data type);
#sql cursor1 = { SELECT PNAME, DEPT FROM STAFF

WHERE JOB=:host_var };

COBOL EXEC SQL DECLARE C1 CURSOR FOR
SELECT NAME, DEPT FROM STAFF

WHERE JOB=:host-var END-EXEC.

FORTRAN EXEC SQL DECLARE C1 CURSOR FOR
+ SELECT NAME, DEPT FROM STAFF
+ WHERE JOB=:host_var

Related concepts:

v “Cursor Types and Unit of Work Considerations” on page 110

Related tasks:

v “Selecting Multiple Rows Using a Cursor” on page 108

Related reference:

v “Cursor Types” on page 114

Chapter 4. Writing Static SQL Programs 109

Cursor Types and Unit of Work Considerations

The actions of a COMMIT or ROLLBACK operation vary for cursors,
depending on how the cursors are declared:

Read-only cursors

If a cursor is determined to be read only and uses a repeatable read
isolation level, repeatable read locks are still gathered and maintained
on system tables needed by the unit of work. Therefore, it is
important for applications to periodically issue COMMIT statements,
even for read only cursors.

WITH HOLD option

If an application completes a unit of work by issuing a COMMIT
statement, all open cursors, except those declared using the WITH
HOLD option, are automatically closed by the database manager.

A cursor that is declared WITH HOLD maintains the resources it
accesses across multiple units of work. The exact effect of declaring a
cursor WITH HOLD depends on how the unit of work ends:
v If the unit of work ends with a COMMIT statement, open cursors

defined WITH HOLD remain OPEN. The cursor is positioned
before the next logical row of the result table. In addition, prepared
statements referencing OPEN cursors defined WITH HOLD are
retained. Only FETCH and CLOSE requests associated with a
particular cursor are valid immediately following the COMMIT.
UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT
OF statements are valid only for rows fetched within the same unit
of work.

Note: If a package is rebound during a unit of work, all held
cursors are closed.

v If the unit of work ends with a ROLLBACK statement, all open
cursors are closed, all locks acquired during the unit of work are
released, and all prepared statements that are dependent on work
done in that unit are dropped.

For example, suppose that the TEMPL table contains 1 000 entries. You
want to update the salary column for all employees, and you expect
to issue a COMMIT statement every time you update 100 rows.
1. Declare the cursor using the WITH HOLD option:

EXEC SQL DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOBCODE, SALARY
FROM TEMPL FOR UPDATE OF SALARY

2. Open the cursor and fetch data from the result table one row at a
time:

110 Programming Client Applications

EXEC SQL OPEN EMPLUPDT
.
.
.

EXEC SQL FETCH EMPLUPDT
INTO :upd_emp, :upd_lname, :upd_tele, :upd_jobcd, :upd_wage,

3. When you want to update or delete a row, use an UPDATE or
DELETE statement using the WHERE CURRENT OF option. For
example, to update the current row, your program can issue:
EXEC SQL UPDATE TEMPL SET SALARY = :newsalary

WHERE CURRENT OF EMPLUPDT

4. After a COMMIT is issued, you must issue a FETCH before you
can update another row.

You should include code in your application to detect and handle an
SQLCODE -501 (SQLSTATE 24501), which can be returned on a
FETCH or CLOSE statement if your application either:
v Uses cursors declared WITH HOLD
v Executes more than one unit of work and leaves a WITH HOLD

cursor open across the unit of work boundary (COMMIT WORK).

If an application invalidates its package by dropping a table on which
it is dependent, the package gets rebound dynamically. If this is the
case, an SQLCODE -501 (SQLSTATE 24501) is returned for a FETCH
or CLOSE statement because the database manager closes the cursor.
The way to handle an SQLCODE -501 (SQLSTATE 24501) in this
situation depends on whether you want to fetch rows from the cursor:
v If you want to fetch rows from the cursor, open the cursor, then run

the FETCH statement. Note, however, that the OPEN statement
repositions the cursor to the start. The previous position held at the
COMMIT WORK statement is lost.

v If you do not want to fetch rows from the cursor, do not issue any
more SQL requests against the cursor.

WITH RELEASE option

When an application closes a cursor using the WITH RELEASE
option, DB2® attempts to release all READ locks that the cursor still
holds. The cursor will only continue to hold WRITE locks. If the
application closes the cursor without using the RELEASE option, the
READ and WRITE locks will be released when the unit of work
completes.

Related tasks:

v “Selecting Multiple Rows Using a Cursor” on page 108

Chapter 4. Writing Static SQL Programs 111

v “Declaring and Using Cursors in Static SQL Programs” on page 109

Example of a Cursor in a Static SQL Program

The samples tut_read.sqc in C, tut_read.sqC/sqx in C++, TutRead.sqlj in
SQLj, and cursor.sqb in COBOL show how to declare a cursor, open the
cursor, fetch rows from the table, and close the cursor.

Because REXX does not support static SQL, a sample is not provided.
v C/C++

The sample tut_read shows a basic select from a table using a cursor. For
example:
/* delcare cursor */
EXEC SQL DECLARE c1 CURSOR FOR

SELECT deptnumb, deptname FROM org WHERE deptnumb < 40;

/* open cursor */
EXEC SQL OPEN c1;

/* fetch cursor */
EXEC SQL FETCH c1 INTO :deptnumb, :deptname;

while (sqlca.sqlcode != 100)
{

printf(" %8d %-14s\n", deptnumb, deptname);
EXEC SQL FETCH c1 INTO :deptnumb, :deptname;

}

/* close cursor */
EXEC SQL CLOSE c1;

v Java™

The sample TutRead shows how to read table data with a simple select
using a cursor. For example:
// cursor defintion

#sql iterator TutRead_Cursor(int, String);

// declare cursor
TutRead_Cursor cur2;
#sql cur2 = {SELECT deptnumb, deptname FROM org WHERE deptnumb < 40};

// fetch cursor
#sql {FETCH :cur2 INTO :deptnumb, :deptname};

// retrieve and display the result from the SELECT statement
while (!cur2.endFetch())
{

System.out.println(deptnumb + ", " + deptname);
#sql {FETCH :cur2 INTO :deptnumb, :deptname};

}

// close cursor
cur2.close();

112 Programming Client Applications

v COBOL
The sample cursor shows an example on how to retrieve table data using a
cursor with Static SQL statement. For example:
* Declare a cursor

EXEC SQL DECLARE c1 CURSOR FOR
SELECT name, dept FROM staff
WHERE job=’Mgr’ END-EXEC.

* Open the cursor
EXEC SQL OPEN c1 END-EXEC.

* Fetch rows from the ’staff’ table
perform Fetch-Loop thru End-Fetch-Loop

until SQLCODE not equal 0.

* Close the cursor
EXEC SQL CLOSE c1 END-EXEC.
move "CLOSE CURSOR" to errloc.

Related concepts:

v “Cursor Types and Unit of Work Considerations” on page 110
v “Error Message Retrieval in an Application” on page 126

Related tasks:

v “Selecting Multiple Rows Using a Cursor” on page 108
v “Declaring and Using Cursors in Static SQL Programs” on page 109

Related reference:

v “Cursor Types” on page 114

Related samples:

v “cursor.sqb -- How to update table data with cursor statically (IBM
COBOL)”

v “tut_read.out -- HOW TO READ TABLES (C)”
v “tut_read.sqc -- How to read tables (C)”
v “tut_read.out -- HOW TO READ TABLES (C++)”
v “tut_read.sqC -- How to read tables (C++)”
v “TutRead.out -- HOW TO READ TABLE DATA (SQLJ)”
v “TutRead.sqlj -- Read data in a table (SQLj)”

Manipulating Retrieved Data

The sections that follow describe how to update and delete retrieved data.
The sample programs that show how to manipulate data are also briefly
described.

Chapter 4. Writing Static SQL Programs 113

Updating and Deleting Retrieved Data in Static SQL Programs

It is possible to update and delete the row referenced by a cursor. For a row
to be updatable, the query corresponding to the cursor must not be read-only.

Procedure:

To update with a cursor, use the WHERE CURRENT OF clause in an
UPDATE statement. Use the FOR UPDATE clause to tell the system that you
want to update some columns of the result table. You can specify a column in
the FOR UPDATE without it being in the fullselect; therefore, you can update
columns that are not explicitly retrieved by the cursor. If the FOR UPDATE
clause is specified without column names, all columns of the table or view
identified in the first FROM clause of the outer fullselect are considered to be
updatable. Do not name more columns than you need in the FOR UPDATE
clause. In some cases, naming extra columns in the FOR UPDATE clause can
cause DB2 to be less efficient in accessing the data.

Deletion with a cursor is done using the WHERE CURRENT OF clause in a
DELETE statement. In general, the FOR UPDATE clause is not required for
deletion of the current row of a cursor. The only exception occurs when using
dynamic SQL for either the SELECT statement or the DELETE statement in an
application that has been precompiled with LANGLEVEL set to SAA1 and
bound with BLOCKING ALL. In this case, a FOR UPDATE clause is necessary
in the SELECT statement.

The DELETE statement causes the row being referenced by the cursor to be
deleted. The deletion leaves the cursor positioned before the next row, and a
FETCH statement must be issued before additional WHERE CURRENT OF
operations may be performed against the cursor.

Related concepts:

v “Queries” in the SQL Reference, Volume 1

Related reference:

v “PRECOMPILE” in the Command Reference

Cursor Types

Cursors fall into three categories:

Read only
The rows in the cursor can only be read, not updated. Read-only
cursors are used when an application will only read data, not modify
it. A cursor is considered read only if it is based on a read-only

114 Programming Client Applications

select-statement. See the description of how to update and retrieve
data for the rules for select-statements that define non-updatable
result tables.

There can be performance advantages for read-only cursors.

Updatable
The rows in the cursor can be updated. Updatable cursors are used
when an application modifies data as the rows in the cursor are
fetched. The specified query can only refer to one table or view. The
query must also include the FOR UPDATE clause, naming each
column that will be updated (unless the LANGLEVEL MIA
precompile option is used).

Ambiguous
The cursor cannot be determined to be updatable or read only from
its definition or context. This situation can happen when a dynamic
SQL statement is encountered that could be used to change a cursor
that would otherwise be considered read-only.

An ambiguous cursor is treated as read only if the BLOCKING ALL
option is specified when precompiling or binding. Otherwise, the
cursor is considered updatable.

Note: Cursors processed dynamically are always ambiguous.

Related concepts:

v “Supported Cursor Modes for the IBM OLE DB Provider” on page 360

Related tasks:

v “Updating and Deleting Retrieved Data in Static SQL Programs” on page
114

Example of a Fetch in a Static SQL Program

The following sample selects from a table using a cursor, opens the cursor,
and fetches rows from the table. For each row fetched, the program decides,
based on simple criteria, whether the row should be deleted or updated.

The REXX language does not support static SQL, so a sample is not provided.
v C/C++ (tut_mod.sqc/tut_mod.sqC)

The following example is from the sample tut_mod. This example selects
from a table using a cursor, opens the cursor, fetches, updates, or delete
rows from the table, then closes the cursor.

EXEC SQL DECLARE c1 CURSOR FOR SELECT * FROM staff WHERE id >= 310;
EXEC SQL OPEN c1;
EXEC SQL FETCH c1 INTO :id, :name, :dept, :job:jobInd, :years:yearsInd, :salary,

:comm:commInd;

Chapter 4. Writing Static SQL Programs 115

The sample tbmod is a longer version of the tut_mod sample, and shows
almost all possible cases of table data modification.

v Java (TutMod.sqlj)
The following example is from the sample TutMod. This example selects
from a table using a cursor, opens the cursor, fetches, updates, or delete
rows from the table, then closes the cursor.
#sql cur = {SELECT * FROM staff WHERE id >= 310};
#sql {FETCH :cur INTO :id, :name, :dept, :job, :years, :salary, :comm};

The sample TbMod is a longer version of TutMod sample, and shows
almost all possible cases of table data modification.

v COBOL (openftch.sqb)
The following example is from the sample openftch. This example selects
from a table using a cursor, opens the cursor, and fetches rows from the
table.
EXEC SQL DECLARE c1 CURSOR FOR

SELECT name, dept FROM staff
WHERE job=’Mgr’
FOR UPDATE OF job END-EXEC.

EXEC SQL OPEN c1 END-EXEC

* call the FETCH and UPDATE/DELETE loop.
perform Fetch-Loop thru End-Fetch-Loop
until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC.

Related concepts:

v “Error Message Retrieval in an Application” on page 126

Related samples:

v “openftch.sqb -- How to modify table data using cursor statically (IBM
COBOL)”

v “tbmod.sqc -- How to modify table data (C)”
v “tut_mod.out -- HOW TO MODIFY TABLE DATA (C)”
v “tut_mod.sqc -- How to modify table data (C)”
v “tbmod.sqC -- How to modify table data (C++)”
v “tut_mod.out -- HOW TO MODIFY TABLE DATA (C++)”
v “tut_mod.sqC -- How to modify table data (C++)”
v “TbMod.sqlj -- How to modify table data (SQLj)”
v “TutMod.out -- HOW TO MODIFY TABLE DATA (SQLJ)”
v “TutMod.sqlj -- Modify data in a table (SQLj)”

116 Programming Client Applications

Scrolling Through and Manipulating Retrieved Data

The sections that follow describe how to scroll through retrieved data. The
sample programs that show how to manipulate data are also briefly
described.

Scrolling Through Previously Retrieved Data

When an application retrieves data from the database, the FETCH statement
allows it to scroll forward through the data, however, the database manager
has no embedded SQL statement that allows it scroll backwards through the
data, (equivalent to a backward FETCH). DB2 CLI and Java, however, do
support a backward FETCH through read-only scrollable cursors.

Procedure:

For embedded SQL applications, you can use the following techniques to
scroll through data that has been retrieved:
v Keep a copy of the data that has been fetched and scroll through it by some

programming technique.
v Use SQL to retrieve the data again, typically by a second SELECT

statement.

Related concepts:

v “JDBC Specification” on page 268

Related tasks:

v “Keeping a Copy of the Data” on page 117
v “Retrieving Data a Second Time” on page 118

Related reference:

v “SQLFetchScroll Function (CLI) - Fetch Rowset and Return Data for All
Bound Columns” in the CLI Guide and Reference, Volume 2

v “Cursor Positioning Rules for SQLFetchScroll() (CLI)” in the CLI Guide and
Reference, Volume 2

Keeping a Copy of the Data

In some situations, it may be useful to maintain a copy of data that is fetched
by the application.

Procedure:

To keep a copy of the data, your application can do the following:
v Save the fetched data in virtual storage.

Chapter 4. Writing Static SQL Programs 117

v Write the data to a temporary file (if the data does not fit in virtual
storage). One effect of this approach is that a user, scrolling backward,
always sees exactly the same data that was fetched, even if the data in the
database was changed in the interim by a transaction.

v Using an isolation level of repeatable read, the data you retrieve from a
transaction can be retrieved again by closing and opening a cursor. Other
applications are prevented from updating the data in your result set.
Isolation levels and locking can affect how users update data.

Related concepts:

v “Row Order Differences Between the First and Second Result Table” on
page 119

Related tasks:

v “Retrieving Data a Second Time” on page 118

Retrieving Data a Second Time

The technique that you use to retrieve data a second time depends on the
order in which you want to see the data again.

Procedure:

You can retrieve data a second time by using any of the following methods:
v Retrieve data from the beginning

To retrieve the data again from the beginning of the result table, close the
active cursor and reopen it. This action positions the cursor at the
beginning of the result table. But, unless the application holds locks on the
table, others may have changed it, so what had been the first row of the
result table may no longer be.

v Retrieve data from the middle
To retrieve data a second time from somewhere in the middle of the result
table, execute a second SELECT statement and declare a second cursor on
the statement. For example, suppose the first SELECT statement was:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

Now, suppose that you want to return to the rows that start with DEPTNO =
'M95' and fetch sequentially from that point. Code the following:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
AND DEPTNO >= 'M95'
ORDER BY DEPTNO

118 Programming Client Applications

This statement positions the cursor where you want it.
v Retrieve data in reverse order

Ascending ordering of rows is the default. If there is only one row for each
value of DEPTNO, then the following statement specifies a unique ascending
ordering of rows:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO

To retrieve the same rows in reverse order, specify that the order is
descending, as in the following statement:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
ORDER BY DEPTNO DESC

A cursor on the second statement retrieves rows in exactly the opposite
order from a cursor on the first statement. Order of retrieval is guaranteed
only if the first statement specifies a unique ordering sequence.

For retrieving rows in reverse order, it can be useful to have two indexes on
the DEPTNO column, one in ascending order, and the other in descending
order.

Related concepts:

v “Row Order Differences Between the First and Second Result Table” on
page 119

Row Order Differences Between the First and Second Result Table

The rows of the second result table may not be displayed in the same order as
in the first. The database manager does not consider the order of rows as
significant unless the SELECT statement uses ORDER BY. Thus, if there are
several rows with the same DEPTNO value, the second SELECT statement may
retrieve them in a different order from the first. The only guarantee is that
they will all be in order by department number, as demanded by the clause
ORDER BY DEPTNO.

The difference in ordering could occur even if you were to execute the same
SQL statement, with the same host variables, a second time. For example, the
statistics in the catalog could be updated between executions, or indexes
could be created or dropped. You could then execute the SELECT statement
again.

The ordering is more likely to change if the second SELECT has a predicate
that the first did not have; the database manager could choose to use an index
on the new predicate. For example, it could choose an index on LOCATION for

Chapter 4. Writing Static SQL Programs 119

the first statement in our example, and an index on DEPTNO for the second.
Because rows are fetched in order by the index key, the second order need not
be the same as the first.

Again, executing two similar SELECT statements can produce a different
ordering of rows, even if no statistics change and no indexes are created or
dropped. In the example, if there are many different values of LOCATION, the
database manager could choose an index on LOCATION for both statements. Yet
changing the value of DEPTNO in the second statement to the following, could
cause the database manager to choose an index on DEPTNO:

SELECT * FROM DEPARTMENT
WHERE LOCATION = 'CALIFORNIA'
AND DEPTNO >= 'Z98'
ORDER BY DEPTNO

Because of the subtle relationships between the form of an SQL statement and
the values in this statement, never assume that two different SQL statements
will return rows in the same order unless the order is uniquely determined by
an ORDER BY clause.

Related tasks:

v “Retrieving Data a Second Time” on page 118

Positioning a Cursor at the End of a Table

If you need to position the cursor at the end of a table, you can use an SQL
statement to position it.

Procedure:

Use either of the following examples as a method for positioning a cursor:
v The database manager does not guarantee an order to data stored in a

table; therefore, the end of a table is not defined. However, order is defined
on the result of an SQL statement:

SELECT * FROM DEPARTMENT
ORDER BY DEPTNO DESC

v The following statement positions the cursor at the row with the highest
DEPTNO value:

SELECT * FROM DEPARTMENT
WHERE DEPTNO =
(SELECT MAX(DEPTNO) FROM DEPARTMENT)

Note, however, that if several rows have the same value, the cursor is
positioned on the first of them.

120 Programming Client Applications

Updating Previously Retrieved Data

To scroll backward and update data that was retrieved previously, you can
use a combination of the techniques that are used to scroll through previously
retrieved data and to update retrieved data.

Procedure:

To update previously retrieved data, you can do one of two things:
v If you have a second cursor on the data to be updated and the SELECT

statement uses none of the restricted elements, you can use a
cursor-controlled UPDATE statement. Name the second cursor in the
WHERE CURRENT OF clause.

v In other cases, use UPDATE with a WHERE clause that names all the
values in the row or specifies the primary key of the table. You can execute
one statement many times with different values of the variables.

Related tasks:

v “Updating and Deleting Retrieved Data in Static SQL Programs” on page
114

v “Scrolling Through Previously Retrieved Data” on page 117

Example of an Insert, Update, and Delete in a Static SQL Program

The following examples show how to insert, update, and delete data using
static SQL.
v C/C++ (tut_mod.sqc/tut_mod.sqC)

The following three examples are from the tut_mod sample. See this sample
for a complete program that shows how to modify table data in C or C++.
The following example shows how to insert table data:
EXEC SQL INSERT INTO staff(id, name, dept, job, salary)

VALUES(380, ’Pearce’, 38, ’Clerk’, 13217.50),
(390, ’Hachey’, 38, ’Mgr’, 21270.00),
(400, ’Wagland’, 38, ’Clerk’, 14575.00);

The following example shows how to update table data:
EXEC SQL UPDATE staff

SET salary = salary + 10000
WHERE id >= 310 AND dept = 84;

The following example shows how to delete from a table:
EXEC SQL DELETE

FROM staff
WHERE id >= 310 AND salary > 20000;

v Java (TutMod.sqlj)

Chapter 4. Writing Static SQL Programs 121

The following three examples are from in the TutMod sample. See this
sample for a complete program that shows how to modify table data in
SQLj.
The following example shows how to insert table data:
#sql {INSERT INTO staff(id, name, dept, job, salary)

VALUES(380, ’Pearce’, 38, ’Clerk’, 13217.50),
(390, ’Hachey’, 38, ’Mgr’, 21270.00),
(400, ’Wagland’, 38, ’Clerk’, 14575.00)};

The following example shows how to update table data:
#sql {UPDATE staff

SET salary = salary + 1000
WHERE id >= 310 AND dept = 84};

The following example shows how to delete from a table:
#sql {DELETE FROM staff

WHERE id >= 310 AND salary > 20000};

v COBOL (updat.sqb)
The following three examples are from the updat sample. See this sample
for a complete program that shows how to modify table data in COBOL.
The following example shows how to insert table data:
EXEC SQL INSERT INTO staff

VALUES (999, ’Testing’, 99, :job-update, 0, 0, 0)
END-EXEC.

The following example shows how to update table data:
EXEC SQL UPDATE staff

SET job=:job-update
WHERE job=’Mgr’
END-EXEC.

The following example shows how to delete from a table:
EXEC SQL DELETE

FROM staff
WHERE job=:job-update
END-EXEC.

Related concepts:

v “Error Message Retrieval in an Application” on page 126

Related samples:

v “tbinfo.out -- HOW TO GET INFORMATION AT THE TABLE LEVEL
(C++)”

v “tbmod.out -- HOW TO MODIFY TABLE DATA (C++)”
v “tbmod.sqC -- How to modify table data (C++)”

122 Programming Client Applications

v “tut_mod.out -- HOW TO MODIFY TABLE DATA (C++)”
v “tut_mod.sqC -- How to modify table data (C++)”
v “tbmod.out -- HOW TO MODIFY TABLE DATA (C)”
v “tbmod.sqc -- How to modify table data (C)”
v “tut_mod.out -- HOW TO MODIFY TABLE DATA (C)”
v “tut_mod.sqc -- How to modify table data (C)”
v “TbMod.out -- HOW TO MODIFY TABLE DATA (SQLJ)”
v “TbMod.sqlj -- How to modify table data (SQLj)”
v “TutMod.out -- HOW TO MODIFY TABLE DATA (SQLJ)”
v “TutMod.sqlj -- Modify data in a table (SQLj)”

Diagnostic Information

The sections that follow describe the diagnostic information that is available
for a static SQL program, such as return codes and how an application should
retrieve error messages.

Return Codes

Most database manager APIs pass back a zero return code when successful. In
general, a non-zero return code indicates that the secondary error handling
mechanism, the SQLCA structure, may be corrupt. In this case, the called API
is not executed. A possible cause for a corrupt SQLCA structure is passing an
invalid address for the structure.

Related reference:

v “SQLCA” in the Administrative API Reference

Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields

Error information is returned in the SQLCODE and SQLSTATE fields of the
SQLCA structure, which is updated after every executable SQL statement and
most database manager API calls.

A source file containing executable SQL statements can provide at least one
SQLCA structure with the name sqlca. The SQLCA structure is defined in the
SQLCA include file. Source files without embedded SQL statements, but
calling database manager APIs, can also provide one or more SQLCA
structures, but their names are arbitrary.

If your application is compliant with the FIPS 127-2 standard, you can declare
the SQLSTATE and SQLCODE as host variables for C, C++, COBOL, and
FORTRAN applications, instead of using the SQLCA structure.

Chapter 4. Writing Static SQL Programs 123

An SQLCODE value of 0 means successful execution (with possible
SQLWARN warning conditions). A positive value means that the statement
was successfully executed but with a warning, as with truncation of a host
variable. A negative value means that an error condition occurred.

An additional field, SQLSTATE, contains a standardized error code consistent
across other IBM® database products and across SQL92–conformant database
managers. Practically speaking, you should use SQLSTATEs when you are
concerned about portability since SQLSTATEs are common across many
database managers.

The SQLWARN field contains an array of warning indicators, even if
SQLCODE is zero. The first element of the SQLWARN array, SQLWARN0,
contains a blank if all other elements are blank. SQLWARN0 contains a W if at
least one other element contains a warning character.

Note: If you want to develop applications that access various IBM RDBMS
servers you should:
v Where possible, have your applications check the SQLSTATE rather

than the SQLCODE.
v If your applications will use DB2 Connect, consider using the

mapping facility provided by DB2 Connect to map SQLCODE
conversions between unlike databases.

Related concepts:

v “SQLSTATE and SQLCODE Variables in C and C++” on page 206
v “SQLSTATE and SQLCODE Variables in COBOL” on page 235
v “SQLSTATE and SQLCODE Variables in FORTRAN” on page 253
v “SQLSTATE and SQLCODE Values in Java” on page 304
v “SQLSTATE and SQLCODE Variables in Perl” on page 331

Related reference:

v “SQLCA” in the Administrative API Reference

Token Truncation in the SQLCA Structure

Since tokens may be truncated in the SQLCA structure, you should not use
the token information for diagnostic purposes. While you can define table and
column names with lengths of up to 128 bytes, the SQLCA tokens will be
truncated to 17 bytes plus a truncation terminator (>). Application logic
should not depend on actual values of the sqlerrmc field.

Related reference:

v “SQLCA” in the Administrative API Reference

124 Programming Client Applications

Exception, Signal, and Interrupt Handler Considerations

An exception, signal, or interrupt handler is a routine that gets control when
an exception, signal, or interrupt occurs. The type of handler applicable is
determined by your operating environment, as shown in the following:

Windows operating systems
Pressing Ctrl-C or Ctrl-Break generates an interrupt.

UNIX®-based systems
Usually, pressing Ctrl-C generates the SIGINT interrupt signal. Note
that keyboards can easily be redefined so SIGINT may be generated
by a different key sequence on your machine.

Do not put SQL statements (other than COMMIT or ROLLBACK) in
exception, signal, and interrupt handlers. With these kinds of error conditions,
you normally want to do a ROLLBACK to avoid the risk of inconsistent data.

Note that you should exercise caution when coding a COMMIT and
ROLLBACK in exception/signal/interrupt handlers. If you call either of these
statements by themselves, the COMMIT or ROLLBACK is not executed until
the current SQL statement is complete, if one is running. This is not the
behavior desired from a Ctrl-C handler.

The solution is to call the INTERRUPT API (sqleintr/sqlgintr) before
issuing a ROLLBACK. This API interrupts the current SQL query (if the
application is executing one) and lets the ROLLBACK begin immediately. If
you are going to perform a COMMIT rather than a ROLLBACK, you do not
want to interrupt the current command.

When using APPC to access a remote database server (DB2 for AIX or host
database system using DB2 Connect), the application may receive a SIGUSR1
signal. This signal is generated by SNA Services/6000 when an unrecoverable
error occurs and the SNA connection is stopped. You may want to install a
signal handler in your application to handle SIGUSR1.

Refer to your platform documentation for specific details on the various
handler considerations.

Related concepts:

v “Processing of Interrupt Requests” on page 485

Exit List Routine Considerations

Do not use SQL or DB2 API calls in exit list routines. Note that you cannot
disconnect from a database in an exit routine.

Chapter 4. Writing Static SQL Programs 125

Error Message Retrieval in an Application

Depending on the language in which your application is written, you use a
different method to retrieve error information:
v C, C++, and COBOL applications can use the GET ERROR MESSAGE API

to obtain the corresponding information related to the SQLCA passed in.
v JDBC and SQLj applications throw an SQLException when an error occurs

during SQL processing. Your applications can catch and display an
SQLException with the following code:
try {

Statement stmt = connection.createStatement();
int rowsDeleted = stmt.executeUpdate(

"DELETE FROM employee WHERE empno = ’000010’");
System.out.println(rowsDeleted + " rows were deleted");

}

catch (SQLException sqle) {
System.out.println(sqle);

}

v REXX applications use the CHECKERR procedure.

Related concepts:

v “SQLSTATE and SQLCODE Variables in C and C++” on page 206
v “SQLSTATE and SQLCODE Variables in COBOL” on page 235
v “SQLSTATE and SQLCODE Variables in FORTRAN” on page 253
v “SQLSTATE and SQLCODE Values in Java” on page 304
v “SQLSTATE and SQLCODE Variables in Perl” on page 331

Related reference:

v “sqlaintp - Get Error Message” in the Administrative API Reference

126 Programming Client Applications

Chapter 5. Writing Dynamic SQL Programs

Characteristics and Reasons for Using
Dynamic SQL 127

Reasons for Using Dynamic SQL. . . . 127
Dynamic SQL Support Statements . . . 128
Dynamic SQL Versus Static SQL 129

Cursors in Dynamic SQL Programs 131
Declaring and Using Cursors in Dynamic
SQL Programs 132
Example of a Cursor in a Dynamic SQL
Program 133

Effects of DYNAMICRULES on Dynamic
SQL 135
The SQLDA in Dynamic SQL Programs . . 137

Host Variables and the SQLDA in
Dynamic SQL Programs 137
Declaring the SQLDA Structure in a
Dynamic SQL Program 138
Preparing a Statement in Dynamic SQL
Using the Minimum SQLDA Structure . . 140
Allocating an SQLDA with Sufficient
SQLVAR Entries for a Dynamic SQL
Program 142
Describing a SELECT Statement in a
Dynamic SQL Program 143
Acquiring Storage to Hold a Row . . . 144
Processing the Cursor in a Dynamic SQL
Program 145

Allocating an SQLDA Structure for a
Dynamic SQL Program 145
Transferring Data in a Dynamic SQL
Program Using an SQLDA Structure . . 149
Processing Interactive SQL Statements in
Dynamic SQL Programs 150
Determination of Statement Type in
Dynamic SQL Programs 151
Processing Variable-List SELECT
Statements in Dynamic SQL Programs . . 151

Saving SQL Requests from End Users . . . 152
Parameter Markers in Dynamic SQL
Programs 153

Providing Variable Input to Dynamic SQL
Using Parameter Markers 153
Example of Parameter Markers in a
Dynamic SQL Program 154

DB2 Call Level Interface (CLI) Compared to
Dynamic SQL 155

DB2 Call Level Interface (CLI) versus
Embedded Dynamic SQL 155
Advantages of DB2 CLI over Embedded
SQL 157
When to Use DB2 CLI or Embedded SQL 159

Characteristics and Reasons for Using Dynamic SQL

The sections that follow describe the reasons for using dynamic SQL as
compared to static SQL.

Reasons for Using Dynamic SQL

You may want to use dynamic SQL when:
v You need all or part of the SQL statement to be generated during

application execution.
v The objects referenced by the SQL statement do not exist at precompile

time.
v You want the statement to always use the most optimal access path, based

on current database statistics.
v You want to modify the compilation environment of the statement, that is,

experiment with the special registers.

© Copyright IBM Corp. 1993-2002 127

Related concepts:

v “Dynamic SQL Support Statements” on page 128
v “Dynamic SQL Versus Static SQL” on page 129

Dynamic SQL Support Statements

The dynamic SQL support statements accept a character-string host variable
and a statement name as arguments. The host variable contains the SQL
statement to be processed dynamically in text form. The statement text is not
processed when an application is precompiled. In fact, the statement text does
not have to exist at the time the application is precompiled. Instead, the SQL
statement is treated as a host variable for precompilation purposes and the
variable is referenced during application execution. These SQL statements are
referred to as dynamic SQL.

Dynamic SQL support statements are required to transform the host variable
containing SQL text into an executable form and operate on it by referencing
the statement name. These statements are:

EXECUTE IMMEDIATE
Prepares and executes a statement that does not use any host
variables. All EXECUTE IMMEDIATE statements in an application are
cached in the same place at run time, so only the last statement is
known. Use this statement as an alternative to the PREPARE and
EXECUTE statements.

PREPARE
Turns the character string form of the SQL statement into an
executable form of the statement, assigns a statement name, and
optionally places information about the statement in an SQLDA
structure.

EXECUTE
Executes a previously prepared SQL statement. The statement can be
executed repeatedly within a connection.

DESCRIBE
Places information about a prepared statement into an SQLDA.

An application can execute most supported SQL statements dynamically.

Note: The content of dynamic SQL statements follows the same syntax as
static SQL statements, with the following exceptions:
v Comments are not allowed.
v The statement cannot begin with EXEC SQL.

128 Programming Client Applications

v The statement cannot end with the statement terminator. An
exception to this is the CREATE TRIGGER statement which can
contain a semicolon (;).

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Dynamic SQL Versus Static SQL

The question of whether to use static or dynamic SQL for performance is
usually of great interest to programmers. The answer depends on your
situation.

Use the following table when deciding whether to use static or dynamic SQL.
Considerations such as security dictate static SQL, while environmental
considerations (for example, using DB2 CLI or the CLP) dictate dynamic SQL.
When making your decision, consider the following recommendations on
whether to choose static or dynamic SQL in a particular situation. In the
following table, 'Either' means that there is no advantage to either static or
dynamic SQL.

Note: These are general recommendations only. Your specific application, its
intended usage, and working environment dictate the actual choice.
When in doubt, prototyping your statements as static SQL, then as
dynamic SQL, then comparing the differences is the best approach.

Table 8. Comparing Static and Dynamic SQL

Consideration Likely Best
Choice

Time to run the SQL statement:
v Less than 2 seconds
v 2 to 10 seconds
v More than 10 seconds

v Static
v Either
v Dynamic

Data Uniformity
v Uniform data distribution
v Slight non-uniformity
v Highly non-uniform distribution

v Static
v Either
v Dynamic

Range (<,>,BETWEEN,LIKE) Predicates
v Very Infrequent
v Occasional
v Frequent

v Static
v Either
v Dynamic

Repetitious Execution
v Runs many times (10 or more times)
v Runs a few times (less than 10 times)
v Runs once

v Either
v Either
v Static

Chapter 5. Writing Dynamic SQL Programs 129

Table 8. Comparing Static and Dynamic SQL (continued)

Consideration Likely Best
Choice

Nature of Query
v Random
v Permanent

v Dynamic
v Either

Run Time Environment (DML/DDL)
v Transaction Processing (DML Only)
v Mixed (DML and DDL - DDL affects packages)
v Mixed (DML and DDL - DDL does not affect packages)

v Either
v Dynamic
v Either

Frequency of RUNSTATS
v Very infrequently
v Regularly
v Frequently

v Static
v Either
v Dynamic

In general, an application using dynamic SQL has a higher start-up (or initial)
cost per SQL statement due to the need to compile the SQL statements before
using them. Once compiled, the execution time for dynamic SQL compared to
static SQL should be equivalent and, in some cases, faster due to better access
plans being chosen by the optimizer. Each time a dynamic statement is
executed, the initial compilation cost becomes less of a factor. If multiple users
are running the same dynamic application with the same statements, only the
first application to issue the statement realizes the cost of statement
compilation.

In a mixed DML and DDL environment, the compilation cost for a dynamic
SQL statement may vary as the statement may be implicitly recompiled by the
system while the application is running. In a mixed environment, the choice
between static and dynamic SQL must also factor in the frequency in which
packages are invalidated. If the DDL does invalidate packages, dynamic SQL
may be more efficient as only those queries executed are recompiled when
they are next used. Others are not recompiled. For static SQL, the entire
package is rebound once it has been invalidated.

Now suppose your particular application contains a mixture of the above
characteristics, and some of these characteristics suggest that you use static
while others suggest dynamic. In this case, there is no obvious decision, and
you should probably use the method you have the most experience with, and
with which you feel most comfortable. Note that the considerations in the
above table are listed roughly in order of importance.

Note: Static and dynamic SQL each come in two types that make a difference
to the DB2 optimizer. These types are:
1. Static SQL containing no host variables

130 Programming Client Applications

This is an unlikely situation which you may see only for:
v Initialization code
v Novice training examples

This is actually the best combination from a performance
perspective in that there is no run-time performance overhead, and
the DB2 optimizer’s capabilities can be fully realized.

2. Static SQL containing host variables
This is the traditional legacy style of DB2® applications. It avoids the
run time overhead of a PREPARE and catalog locks acquired during
statement compilation. Unfortunately, the full power of the
optimizer cannot be utilized because the optimizer does not know
the entire SQL statement. A particular problem exists with highly
non-uniform data distributions.

3. Dynamic SQL containing no parameter markers
This is the typical style for random query interfaces (such as the
CLP), and is the optimizer’s preferred flavor of SQL. For complex
queries, the overhead of the PREPARE statement is usually offset by
the improved execution time.

4. Dynamic SQL containing parameter markers
This is the most common type of SQL for CLI applications. The key
benefit is that the presence of parameter markers allows the cost of
the PREPARE to be amortized over the repeated executions of the
statement, typically a select or insert. This amortization is true for
all repetitive dynamic SQL applications. Unfortunately, just like
static SQL with host variables, parts of the DB2 optimizer will not
work because complete information is unavailable. The
recommendation is to use static SQL with host variables or dynamic
SQL without parameter markers as the most efficient options.

Related concepts:

v “Example of Parameter Markers in a Dynamic SQL Program” on page 154

Related tasks:

v “Providing Variable Input to Dynamic SQL Using Parameter Markers” on
page 153

Cursors in Dynamic SQL Programs

The sections that follow describe how to declare and use cursors in dynamic
SQL, and briefly describe the sample programs that use cursors.

Chapter 5. Writing Dynamic SQL Programs 131

Declaring and Using Cursors in Dynamic SQL Programs

Processing a cursor dynamically is nearly identical to processing it using static
SQL. When a cursor is declared, it is associated with a query.

In static SQL, the query is a SELECT statement in text form, while in dynamic
SQL, the query is associated with a statement name assigned in a PREPARE
statement. Any referenced host variables are represented by parameter
markers.

The main difference between a static and a dynamic cursor is that a static
cursor is prepared at precompile time, and a dynamic cursor is prepared at
run time. Additionally, host variables referenced in the query are represented
by parameter markers, which are replaced by run-time host variables when
the cursor is opened.

Procedure:

Use the examples shown in the following table when coding cursors for a
dynamic SQL program:

Table 9. Declare Statement Associated with a Dynamic SELECT

Language Example Source Code

C/C++ strcpy(prep_string, "SELECT tabname FROM syscat.tables"
"WHERE tabschema = ?");

EXEC SQL PREPARE s1 FROM :prep_string;
EXEC SQL DECLARE c1 CURSOR FOR s1;
EXEC SQL OPEN c1 USING :host_var;

Java (JDBC) PreparedStatement prep_string = ("SELECT tabname FROM syscat.tables
WHERE tabschema = ?");

prep_string.setCursor("c1");
prep_string.setString(1, host_var);
ResultSet rs = prep_string.executeQuery();

COBOL MOVE "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = ?"
TO PREP-STRING.

EXEC SQL PREPARE S1 FROM :PREP-STRING END-EXEC.
EXEC SQL DECLARE C1 CURSOR FOR S1 END-EXEC.
EXEC SQL OPEN C1 USING :host-var END-EXEC.

FORTRAN prep_string = ’SELECT tabname FROM syscat.tables WHERE tabschema = ?’
EXEC SQL PREPARE s1 FROM :prep_string
EXEC SQL DECLARE c1 CURSOR FOR s1
EXEC SQL OPEN c1 USING :host_var

Related concepts:

v “Example of a Cursor in a Dynamic SQL Program” on page 133

132 Programming Client Applications

v “Cursors in REXX” on page 344

Related tasks:

v “Selecting Multiple Rows Using a Cursor” on page 108

Example of a Cursor in a Dynamic SQL Program

A dynamic SQL statement can be prepared for execution with the PREPARE
statement and executed with the EXECUTE statement or the DECLARE
CURSOR statement.

PREPARE with EXECUTE

The following example shows how a dynamic SQL statement can be prepared
for execution with the PREPARE statement and executed with the EXECUTE
statement:
v C/C++ (dbuse.sqc/dbuse.sqC):

The following example is from the sample dbuse:
EXEC SQL BEGIN DECLARE SECTION;

char hostVarStmt[50];
EXEC SQL END DECLARE SECTION;

strcpy(hostVarStmt, "DELETE FROM org WHERE deptnumb = 15");
EXEC SQL PREPARE Stmt FROM :hostVarStmt;
EXEC SQL EXECUTE Stmt;

PREPARE with DECLARE CURSOR

The following examples show how a dynamic SQL statement can be prepared
for execution with the PREPARE statement, and executed with the DECLARE
CURSOR statement:
v C

EXEC SQL BEGIN DECLARE SECTION;
char st[80];
char parm_var[19};

EXEC SQL END DECLARE SECTION;

strcpy(st, "SELECT tabname FROM syscat.tables");
strcat(st, " WHERE tabname <> ? ORDER BY 1");
EXEC SQL PREPARE s1 FROM :st;
EXEC SQL DECLARE c1 CURSOR FOR s1;
strcpy(parm_var, "STAFF");
EXEC SQL OPEN c1 USING :parm_var;

v Java
PreparedStatement pstmt1 = con.prepareStatement(

"SELECT tabname FROM syscat.tables " +
"WHERE tabname <> ? ORDER BY 1");

Chapter 5. Writing Dynamic SQL Programs 133

// set cursor name for the positioned update statement
pstmt1.setCursorName("c1");
pstmt1.setString(1, "STAFF");
ResultSet rs = pstmt1.executeQuery();

v COBOL (dynamic.sqb)
The following example is from the dynamic.sqb sample:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 st pic x(80).
01 parm-var pic x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

move "SELECT TABNAME FROM SYSCAT.TABLES ORDER BY 1 WHERE TABNAME <> ?" to st.
EXEC SQL PREPARE s1 FROM :st END-EXEC.

EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC.

move "STAFF" to parm-var.
EXEC SQL OPEN c1 USING :parm-var END-EXEC.

EXECUTE IMMEDIATE

You can can also prepare and execute a dynamic SQL satement with the
EXECUTE IMMEDIATE statement (execept for SELECT statements that return
more than one row).
v C/C++ (dbuse.sqc/dbuse.sqC)

The following example is from the function
DynamicStmtEXECUTE_IMMEDIATE() in the sample dbuse:
EXEC SQL BEGIN DECLARE SECTION;

char stmt1[50];
EXEC SQL END DECLARE SECTION;

strcpy(stmt1, "CREATE TABLE table1(col1 INTEGER)");
EXEC SQL EXECUTE IMMEDIATE :stmt1;

Related concepts:

v “Error Message Retrieval in an Application” on page 126

Related samples:

v “dbuse.out -- HOW TO USE A DATABASE (C)”
v “dbuse.sqc -- How to use a database (C)”
v “dbuse.out -- HOW TO USE A DATABASE (C++)”
v “dbuse.sqC -- How to use a database (C++)”

134 Programming Client Applications

Effects of DYNAMICRULES on Dynamic SQL

The PRECOMPILE and BIND option DYNAMICRULES determines what
values apply at run-time for the following dynamic SQL attributes:
v The authorization ID that is used during authorization checking.
v The qualifier that is used for qualification of unqualified objects.
v Whether the package can be used to dynamically prepare the following

statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT ON,
RENAME, SET INTEGRITY and SET EVENT MONITOR STATE statements.

In addition to the DYNAMICRULES value, the run-time environment of a
package controls how dynamic SQL statements behave at run-time. The two
possible run-time environments are:
v The package runs as part of a stand-alone program
v The package runs within a routine context

The combination of the DYNAMICRULES value and the run-time
environment determine the values for the dynamic SQL attributes. That set of
attribute values is called the dynamic SQL statement behavior. The four
behaviors are:

Run behavior DB2® uses the authorization ID of the user (the ID that
initially connected to DB2) executing the package as the value
to be used for authorization checking of dynamic SQL
statements and for the initial value used for implicit
qualification of unqualified object references within dynamic
SQL statements.

Bind behavior At run-time, DB2 uses all the rules that apply to static SQL for
authorization and qualification. That is, take the authorization
ID of the package owner as the value to be used for
authorization checking of dynamic SQL statements and the
package default qualifier for implicit qualification of
unqualified object references within dynamic SQL statements.

Define behavior
Define behavior applies only if the dynamic SQL statement is
in a package that is run within a routine context, and the
package was bound with DYNAMICRULES DEFINEBIND or
DYNAMICRULES DEFINERUN. DB2 uses the authorization
ID of the routine definer (not the routine’s package binder) as
the value to be used for authorization checking of dynamic
SQL statements and for implicit qualification of unqualified
object references within dynamic SQL statements within that
routine.

Chapter 5. Writing Dynamic SQL Programs 135

Invoke behavior

Invoke behavior applies only if the dynamic SQL statement is
in a package that is run within a routine context, and the
package was bound with DYNAMICRULES INVOKEBIND or
DYNAMICRULES INVOKERUN. DB2 uses the current
statement authorization ID in effect when the routine is
invoked as the value to be used for authorization checking of
dynamic SQL and for implicit qualification of unqualified
object references within dynamic SQL statements within that
routine. This is summarized by the following table:

Invoking Environment ID Used

Any static SQL Implicit or explicit value of the OWNER
of the package the SQL invoking the
routine came from.

Used in definition of view or trigger Definer of the view or trigger.

Dynamic SQL from a run behavior
package

ID used to make the initial connection to
DB2.

Dynamic SQL from a define behavior
package

Definer of the routine that uses the
package that the SQL invoking the
routine came from.

Dynamic SQL from an invoke behavior
package

Current® authorization ID invoking the
routine.

The following table shows the combination of the DYNAMICRULES value
and the run-time environment that yields each dynamic SQL behavior.

Table 10. How DYNAMICRULES and the Run-Time Environment Determine Dynamic SQL Statement
Behavior

DYNAMICRULES Value Behavior of Dynamic SQL
Statements in a Standalone
Program Environment

Behavior of Dynamic SQL
Statements in a Routine
Environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

136 Programming Client Applications

Table 11. Definitions of Dynamic SQL Statement Behaviors

Dynamic SQL
Attribute

Setting for
Dynamic SQL
Attributes: Bind
Behavior

Setting for
Dynamic SQL
Attributes: Run
Behavior

Setting for
Dynamic SQL
Attributes: Define
Behavior

Setting for Dynamic
SQL Attributes:
Invoke Behavior

Authorization
ID

The implicit or
explicit value of
the OWNER
BIND option

ID of User
Executing Package

Routine definer (not
the routine’s
package owner)

Current statement
authorization ID when
routine is invoked.

Default qualifier
for unqualified
objects

The implicit or
explicit value of
the QUALIFIER
BIND option

CURRENT
SCHEMA Special
Register

Routine definer (not
the routine’s
package owner)

Current statement
authorization ID when
routine is invoked.

Can execute
GRANT,
REVOKE,
ALTER,
CREATE, DROP,
COMMENT
ON, RENAME,
SET INTEGRITY
and SET EVENT
MONITOR
STATE

No Yes No No

Related concepts:

v “Authorization Considerations for Dynamic SQL” on page 57

The SQLDA in Dynamic SQL Programs

The sections that follow describe the different considerations that apply when
you declare the SQLDA for a dynamic SQL program.

Host Variables and the SQLDA in Dynamic SQL Programs

With static SQL, host variables used in embedded SQL statements are known
at application compile time. With dynamic SQL, the embedded SQL
statements and consequently the host variables are not known until
application run time. Thus, for dynamic SQL applications, you need to deal
with the list of host variables that are used in your application. You can use
the DESCRIBE statement to obtain host variable information for any SELECT
statement that has been prepared (using PREPARE), and store that
information into the SQL descriptor area (SQLDA).

Chapter 5. Writing Dynamic SQL Programs 137

Note: Java™ applications do not use the SQLDA structure, and therefore do
not use the PREPARE or DESCRIBE statements. In JDBC applications,
you can use a PreparedStatement object and the executeQuery()
method to generate a ResultSet object, which is the equivalent of a
host-language cursor. In SQLj applications, you can also declare an
SQLj iterator object with a CursorByPos or CursorByName cursor to
return data from FETCH statements.

When the DESCRIBE statement gets executed in your application, the
database manager defines your host variables in an SQLDA. Once the host
variables are defined in the SQLDA, you can use the FETCH statement to
assign values to the host variables, using a cursor.

Related concepts:

v “Example of a Cursor in a Dynamic SQL Program” on page 133

Related reference:

v “DESCRIBE statement” in the SQL Reference, Volume 2

v “FETCH statement” in the SQL Reference, Volume 2

v “PREPARE statement” in the SQL Reference, Volume 2

v “SQLDA” in the Administrative API Reference

Declaring the SQLDA Structure in a Dynamic SQL Program

An SQLDA contains a variable number of occurrences of SQLVAR entries,
each of which contains a set of fields that describe one column in a row of
data, as shown in the following figure. There are two types of SQLVAR
entries: base SQLVARs, and secondary SQLVARs.

138 Programming Client Applications

Procedure:

Because the number of SQLVAR entries required depends on the number of
columns in the result table, an application must be able to allocate an
appropriate number of SQLVAR elements when needed. Use one of the
following methods:
v Provide the largest SQLDA (that is, the one with the greatest number of

SQLVAR entries) that is needed. The maximum number of columns that can
be returned in a result table is 255. If any of the columns being returned is
either a LOB type or a distinct type, the value in SQLN is doubled, and the
number of SQLVARs needed to hold the information is doubled to 510.
However, as most SELECT statements do not even retrieve 255 columns,
most of the allocated space is unused.

v Provide a smaller SQLDA with fewer SQLVAR entries. In this case, if there
are more columns in the result than SQLVAR entries allowed for in the
SQLDA, no descriptions are returned. Instead, the database manager
returns the number of select list items detected in the SELECT statement.
The application allocates an SQLDA with the required number of SQLVAR
entries, then uses the DESCRIBE statement to acquire the column
descriptions.

For both methods, the question arises as to how many initial SQLVAR entries
you should allocate. Each SQLVAR element uses up 44 bytes of storage (not

HEADER

sqldaid CHAR

sqln SMALLINT

sqltype SMALLINT

sqldata POINTER

sqlname VARCHAR (30)

sqldabc INTEGER

sqld SMALLINT

sqllen SMALLINT

sqlind POINTER

OTHER SQLVARs

SQLVAR

(1 per field)

Figure 3. The SQL Descriptor Area (SQLDA)

Chapter 5. Writing Dynamic SQL Programs 139

counting storage allocated for the SQLDATA and SQLIND fields). If memory
is plentiful, the first method of providing an SQLDA of maximum size is
easier to implement.

The second method of allocating a smaller SQLDA is only applicable to
programming languages such as C and C++ that support the dynamic
allocation of memory. For languages such as COBOL and FORTRAN that do
not support the dynamic allocation of memory, you have to use the first
method.

Related tasks:

v “Preparing a Statement in Dynamic SQL Using the Minimum SQLDA
Structure” on page 140

v “Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL
Program” on page 142

v “Allocating an SQLDA Structure for a Dynamic SQL Program” on page 145

Related reference:

v “SQLDA” in the Administrative API Reference

Preparing a Statement in Dynamic SQL Using the Minimum SQLDA
Structure

Use the information provided here as an example of how to allocate the
minimum SQLDA structure for a statement.

Restrictions:

You can only allocate a smaller SQLDA structure with programming
languages, such as C and C++, that support the dynamic allocation of
memory.

Procedure:

Suppose an application declares an SQLDA structure named minsqlda that
contains no SQLVAR entries. The SQLN field of the SQLDA describes the
number of SQLVAR entries that are allocated. In this case, SQLN must be set
to 0. Next, to prepare a statement from the character string dstring and to
enter its description into minsqlda, issue the following SQL statement
(assuming C syntax, and assuming that minsqlda is declared as a pointer to an
SQLDA structure):

EXEC SQL
PREPARE STMT INTO :*minsqlda FROM :dstring;

140 Programming Client Applications

Suppose that the statement contained in dstring is a SELECT statement that
returns 20 columns in each row. After the PREPARE statement (or a
DESCRIBE statement), the SQLD field of the SQLDA contains the number of
columns of the result table for the prepared SELECT statement.

The SQLVARs in the SQLDA are set in the following cases:
v SQLN >= SQLD and no column is either a LOB or a distinct type.

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
v SQLN >= 2*SQLD and at least one column is a LOB or a distinct type.

2* SQLD SQLVAR entries are set and SQLDOUBLED is set to 2.
v SQLD <= SQLN < 2*SQLD and at least one column is a distinct type, but

there are no LOB columns.
The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.
If the SQLWARN bind option is YES, a warning SQLCODE +237
(SQLSTATE 01594) is issued.

The SQLVARs in the SQLDA are not set (requiring allocation of additional
space and another DESCRIBE) in the following cases:
v SQLN < SQLD and no column is either a LOB or distinct type.

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +236 (SQLSTATE
01005) is issued.
Allocate SQLD SQLVARs for a successful DESCRIBE.

v SQLN < SQLD and at least one column is a distinct type, but there are no
LOB columns.
No SQLVAR entries are set and SQLDOUBLED is set to blank. If the
SQLWARN bind option is YES, a warning SQLCODE +239 (SQLSTATE
01005) is issued.
Allocate 2*SQLD SQLVARs for a successful DESCRIBE, including the names
of the distinct types.

v SQLN < 2*SQLD and at least one column is a LOB.
No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning
SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of
the SQLWARN bind option).
Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

The SQLWARN option of the BIND command is used to control whether the
DESCRIBE (or PREPARE...INTO) will return the following warnings:
v SQLCODE +236 (SQLSTATE 01005)
v SQLCODE +237 (SQLSTATE 01594)
v SQLCODE +239 (SQLSTATE 01005).

Chapter 5. Writing Dynamic SQL Programs 141

It is recommended that your application code always consider that these
SQLCODEs could be returned. The warning SQLCODE +238 (SQLSTATE
01005) is always returned when there are LOB columns in the select list and
there are insufficient SQLVARs in the SQLDA. This is the only way the
application can know that the number of SQLVARs must be doubled because
of a LOB column in the result set.

Related tasks:

v “Declaring the SQLDA Structure in a Dynamic SQL Program” on page 138
v “Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL

Program” on page 142
v “Allocating an SQLDA Structure for a Dynamic SQL Program” on page 145

Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL
Program

After you determine the number of columns in the result table, allocate
storage for a second, full-size SQLDA.

Procedure:

Assume that the result table contains 20 columns (none of which are LOB
columns). In this situation, you must allocate a second SQLDA structure,
fulsqlda with at least 20 SQLVAR elements (or 40 elements if the result table
contains any LOBs or distinct types). For the rest of this example, assume that
no LOBs or distinct types are in the result table.

When you calculate the storage requirements for SQLDA structures, include
the following:
v A fixed-length header, 16 bytes in length, containing fields such as SQLN

and SQLD
v A variable-length array of SQLVAR entries, of which each element is 44

bytes in length on 32-bit platforms, and 56 bytes in length on 64-bit
platforms.

The number of SQLVAR entries needed for fulsqlda is specified in the SQLD
field of minsqlda. Assume this value is 20. Therefore, the storage allocation
required for fulsqlda is:

16 + (20 * sizeof(struct sqlvar))

Note: On 64-bit platforms, sizeof(struct sqlvar) and sizeof(struct
sqlvar2) returns 56. On 32-bit platforms, sizeof(struct sqlvar) and
sizeof(struct sqlvar2) returns 44.

142 Programming Client Applications

This value represents the size of the header plus 20 times the size of each
SQLVAR entry, giving a total of 896 bytes.

You can use the SQLDASIZE macro to avoid doing your own calculations and
to avoid any version-specific dependencies.

Related tasks:

v “Declaring the SQLDA Structure in a Dynamic SQL Program” on page 138
v “Preparing a Statement in Dynamic SQL Using the Minimum SQLDA

Structure” on page 140
v “Allocating an SQLDA Structure for a Dynamic SQL Program” on page 145

Describing a SELECT Statement in a Dynamic SQL Program

After you allocate sufficient space for the second SQLDA (in this example,
called fulsqlda), you must code the application to describe the SELECT
statement.

Procedure:

Code your application to perform the following steps:
1. Store the value 20 in the SQLN field of fulsqlda (the assumption in this

example is that the result table contains 20 columns, and none of these
columns are LOB columns).

2. Obtain information about the SELECT statement using the second SQLDA
structure, fulsqlda. Two methods are available:
v Use another PREPARE statement, specifying fulsqlda instead of

minsqlda.
v Use the DESCRIBE statement specifying fulsqlda.

Using the DESCRIBE statement is preferred because the costs of preparing the
statement a second time are avoided. The DESCRIBE statement simply reuses
information previously obtained during the prepare operation to fill in the
new SQLDA structure. The following statement can be issued:

EXEC SQL DESCRIBE STMT INTO :fulsqlda

After this statement is executed, each SQLVAR element contains a description
of one column of the result table.

Related tasks:

v “Acquiring Storage to Hold a Row” on page 144

Chapter 5. Writing Dynamic SQL Programs 143

Acquiring Storage to Hold a Row

Before the application can fetch a row of the result table using an SQLDA
structure, the application must first allocate storage for the row.

Procedure:

Code your application to do the following:
1. Analyze each SQLVAR description to determine how much space is

required for the value of that column.
Note that for LOB values, when the SELECT is described, the data type
given in the SQLVAR is SQL_TYP_xLOB. This data type corresponds to a
plain LOB host variable, that is, the whole LOB will be stored in memory
at one time. This will work for small LOBs (up to a few MB), but you
cannot use this data type for large LOBs (say 1 GB). It will be necessary
for your application to change its column definition in the SQLVAR to be
either SQL_TYP_xLOB_LOCATOR or SQL_TYPE_xLOB_FILE. (Note that
changing the SQLTYPE field of the SQLVAR also necessitates changing the
SQLLEN field.) After changing the column definition in the SQLVAR, your
application can then allocate the correct amount of storage for the new
type.

2. Allocate storage for the value of that column.
3. Store the address of the allocated storage in the SQLDATA field of the

SQLDA structure.

These steps are accomplished by analyzing the description of each column
and replacing the content of each SQLDATA field with the address of a
storage area large enough to hold any values from that column. The length
attribute is determined from the SQLLEN field of each SQLVAR entry for data
items that are not of a LOB type. For items with a type of BLOB, CLOB, or
DBCLOB, the length attribute is determined from the SQLLONGLEN field of
the secondary SQLVAR entry.

In addition, if the specified column allows nulls, the application must replace
the content of the SQLIND field with the address of an indicator variable for
the column.

Related concepts:

v “Large Object Usage” in the Application Development Guide: Programming
Server Applications

Related tasks:

v “Processing the Cursor in a Dynamic SQL Program” on page 145

144 Programming Client Applications

Processing the Cursor in a Dynamic SQL Program

After the SQLDA structure is properly allocated, the cursor associated with
the SELECT statement can be opened and rows can be fetched.

Procedure:

To process the cursor that is associated with a SELECT statement, first open
the cursor, then fetch rows by specifying the USING DESCRIPTOR clause of
the FETCH statement. For example, a C application could have the following:

EXEC SQL OPEN pcurs
EMB_SQL_CHECK("OPEN") ;
EXEC SQL FETCH pcurs USING DESCRIPTOR :*sqldaPointer
EMB_SQL_CHECK("FETCH") ;

For a successful FETCH, you could write the application to obtain the data
from the SQLDA and display the column headings. For example:

display_col_titles(sqldaPointer) ;

After the data is displayed, you should close the cursor and release any
dynamically allocated memory. For example:

EXEC SQL CLOSE pcurs ;
EMB_SQL_CHECK("CLOSE CURSOR") ;

Allocating an SQLDA Structure for a Dynamic SQL Program

Allocate an SQLDA structure for your application so that you can use it to
pass data to and from your application.

Procedure:

To create an SQLDA structure with C, either embed the INCLUDE SQLDA
statement in the host language or include the SQLDA include file to get the
structure definition. Then, because the size of an SQLDA is not fixed, the
application must declare a pointer to an SQLDA structure and allocate storage
for it. The actual size of the SQLDA structure depends on the number of
distinct data items being passed using the SQLDA.

In the C/C++ programming language, a macro is provided to facilitate
SQLDA allocation. With the exception of the HP-UX platform, this macro has
the following format:

#define SQLDASIZE(n) (offsetof(struct sqlda, sqlvar) \
+ (n) × sizeof(struct sqlvar))

On the HP-UX platform, the macro has the following format:

Chapter 5. Writing Dynamic SQL Programs 145

#define SQLDASIZE(n) (sizeof(struct sqlda) \
+ (n−1) × sizeof(struct sqlvar))

The effect of this macro is to calculate the required storage for an SQLDA
with n SQLVAR elements.

To create an SQLDA structure with COBOL, you can either embed an
INCLUDE SQLDA statement or use the COPY statement. Use the COPY
statement when you want to control the maximum number of SQLVARs and
hence the amount of storage that the SQLDA uses. For example, to change the
default number of SQLVARs from 1489 to 1, use the following COPY
statement:

COPY "sqlda.cbl"
replacing --1489--
by --1--.

The FORTRAN language does not directly support self-defining data
structures or dynamic allocation. No SQLDA include file is provided for
FORTRAN, because it is not possible to support the SQLDA as a data
structure in FORTRAN. The precompiler will ignore the INCLUDE SQLDA
statement in a FORTRAN program.

However, you can create something similar to a static SQLDA structure in a
FORTRAN program, and use this structure wherever an SQLDA can be used.
The file sqldact.f contains constants that help in declaring an SQLDA
structure in FORTRAN.

Execute calls to SQLGADDR to assign pointer values to the SQLDA elements
that require them.

The following table shows the declaration and use of an SQLDA structure
with one SQLVAR element.

146 Programming Client Applications

Language Example Source Code

C/C++ #include <sqlda.h>
struct sqlda *outda = (struct sqlda *)malloc(SQLDASIZE(1));

/* DECLARE LOCAL VARIABLES FOR HOLDING ACTUAL DATA */
double sal;
double sal = 0;
short salind;
short salind = 0;

/* INITIALIZE ONE ELEMENT OF SQLDA */
memcpy(outda->sqldaid,"SQLDA ",sizeof(outda->sqldaid));
outda->sqln = outda->sqld = 1;
outda->sqlvar[0].sqltype = SQL_TYP_NFLOAT;
outda->sqlvar[0].sqllen = sizeof(double);.
outda->sqlvar[0].sqldata = (unsigned char *)&sal;
outda->sqlvar[0].sqlind = (short *)&salind;

COBOL WORKING-STORAGE SECTION.
77 SALARY PIC S99999V99 COMP-3.
77 SAL-IND PIC S9(4) COMP-5.

EXEC SQL INCLUDE SQLDA END-EXEC

* Or code a useful way to save unused SQLVAR entries.
* COPY "sqlda.cbl" REPLACING --1489-- BY --1--.

01 decimal-sqllen pic s9(4) comp-5.
01 decimal-parts redefines decimal-sqllen.

05 precision pic x.
05 scale pic x.

* Initialize one element of output SQLDA
MOVE 1 TO SQLN
MOVE 1 TO SQLD
MOVE SQL-TYP-NDECIMAL TO SQLTYPE(1)

* Length = 7 digits precision and 2 digits scale

MOVE x"07" TO PRECISION.
MOVE x"02" TO SCALE.
MOVE DECIMAL-SQLLEN TO O-SQLLEN(1).
SET SQLDATA(1) TO ADDRESS OF SALARY
SET SQLIND(1) TO ADDRESS OF SAL-IND

Chapter 5. Writing Dynamic SQL Programs 147

Language Example Source Code

FORTRAN include ’sqldact.f’

integer*2 sqlvar1
parameter (sqlvar1 = sqlda_header_sz + 0*sqlvar_struct_sz)

C Declare an Output SQLDA -- 1 Variable
character out_sqlda(sqlda_header_sz + 1*sqlvar_struct_sz)

character*8 out_sqldaid ! Header
integer*4 out_sqldabc
integer*2 out_sqln
integer*2 out_sqld

integer*2 out_sqltype1 ! First Variable
integer*2 out_sqllen1
integer*4 out_sqldata1
integer*4 out_sqlind1
integer*2 out_sqlnamel1
character*30 out_sqlnamec1

equivalence(out_sqlda(sqlda_sqldaid_ofs), out_sqldaid)
equivalence(out_sqlda(sqlda_sqldabc_ofs), out_sqldabc)
equivalence(out_sqlda(sqlda_sqln_ofs), out_sqln)
equivalence(out_sqlda(sqlda_sqld_ofs), out_sqld)
equivalence(out_sqlda(sqlvar1+sqlvar_type_ofs), out_sqltype1)
equivalence(out_sqlda(sqlvar1+sqlvar_len_ofs), out_sqllen1)
equivalence(out_sqlda(sqlvar1+sqlvar_data_ofs), out_sqldata1)
equivalence(out_sqlda(sqlvar1+sqlvar_ind_ofs), out_sqlind1)
equivalence(out_sqlda(sqlvar1+sqlvar_name_length_ofs),
+ out_sqlnamel1)
equivalence(out_sqlda(sqlvar1+sqlvar_name_data_ofs),
+ out_sqlnamec1)

C Declare Local Variables for Holding Returned Data.
real*8 salary
integer*2 sal_ind

C Initialize the Output SQLDA (Header)
out_sqldaid = ’OUT_SQLDA’
out_sqldabc = sqlda_header_sz + 1*sqlvar_struct_sz
out_sqln = 1
out_sqld = 1

C Initialize VAR1
out_sqltype1 = SQL_TYP_NFLOAT
out_sqllen1 = 8
rc = sqlgaddr(%ref(salary), %ref(out_sqldata1))
rc = sqlgaddr(%ref(sal_ind), %ref(out_sqlind1))

148 Programming Client Applications

In languages not supporting dynamic memory allocation, an SQLDA with the
desired number of SQLVAR elements must be explicitly declared in the host
language. Be sure to declare enough SQLVAR elements as determined by the
needs of the application.

Related tasks:

v “Preparing a Statement in Dynamic SQL Using the Minimum SQLDA
Structure” on page 140

v “Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL
Program” on page 142

v “Transferring Data in a Dynamic SQL Program Using an SQLDA Structure”
on page 149

Transferring Data in a Dynamic SQL Program Using an SQLDA Structure

Greater flexibility is available when transferring data using an SQLDA than is
available using lists of host variables. For example, You can use an SQLDA to
transfer data that has no native host language equivalent, such as DECIMAL
data in the C language.

Procedure:

Use the following table as a cross-reference listing that shows how the
numeric values and symbolic names are related.

Table 12. DB2 SQLDA SQL Types. Numeric Values and Corresponding Symbolic Names

SQL Column Type SQLTYPE numeric
value

SQLTYPE symbolic name1

DATE 384/385 SQL_TYP_DATE / SQL_TYP_NDATE

TIME 388/389 SQL_TYP_TIME / SQL_TYP_NTIME

TIMESTAMP 392/393 SQL_TYP_STAMP / SQL_TYP_NSTAMP

n/a2 400/401 SQL_TYP_CGSTR / SQL_TYP_NCGSTR

BLOB 404/405 SQL_TYP_BLOB / SQL_TYP_NBLOB

CLOB 408/409 SQL_TYP_CLOB / SQL_TYP_NCLOB

DBCLOB 412/413 SQL_TYP_DBCLOB / SQL_TYP_NDBCLOB

VARCHAR 448/449 SQL_TYP_VARCHAR / SQL_TYP_NVARCHAR

CHAR 452/453 SQL_TYP_CHAR / SQL_TYP_NCHAR

LONG VARCHAR 456/457 SQL_TYP_LONG / SQL_TYP_NLONG

n/a3 460/461 SQL_TYP_CSTR / SQL_TYP_NCSTR

VARGRAPHIC 464/465 SQL_TYP_VARGRAPH / SQL_TYP_NVARGRAPH

GRAPHIC 468/469 SQL_TYP_GRAPHIC / SQL_TYP_NGRAPHIC

Chapter 5. Writing Dynamic SQL Programs 149

Table 12. DB2 SQLDA SQL Types (continued). Numeric Values and Corresponding Symbolic Names

SQL Column Type SQLTYPE numeric
value

SQLTYPE symbolic name1

LONG VARGRAPHIC 472/473 SQL_TYP_LONGRAPH / SQL_TYP_NLONGRAPH

FLOAT 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

REAL4 480/481 SQL_TYP_FLOAT / SQL_TYP_NFLOAT

DECIMAL5 484/485 SQL_TYP_DECIMAL / SQL_TYP_DECIMAL

INTEGER 496/497 SQL_TYP_INTEGER / SQL_TYP_NINTEGER

SMALLINT 500/501 SQL_TYP_SMALL / SQL_TYP_NSMALL

n/a 804/805 SQL_TYP_BLOB_FILE / SQL_TYPE_NBLOB_FILE

n/a 808/809 SQL_TYP_CLOB_FILE / SQL_TYPE_NCLOB_FILE

n/a 812/813 SQL_TYP_DBCLOB_FILE / SQL_TYPE_NDBCLOB_FILE

n/a 960/961 SQL_TYP_BLOB_LOCATOR / SQL_TYP_NBLOB_LOCATOR

n/a 964/965 SQL_TYP_CLOB_LOCATOR / SQL_TYP_NCLOB_LOCATOR

n/a 968/969 SQL_TYP_DBCLOB_LOCATOR / SQL_TYP_NDBCLOB_LOCATOR

Note: These defined types can be found in the sql.h include file located in the include sub-directory of
the sqllib directory. (For example, sqllib/include/sql.h for the C programming language.)

1. For the COBOL programming language, the SQLTYPE name does not use underscore (_) but uses a
hyphen (-) instead.

2. This is a null-terminated graphic string.

3. This is a null-terminated character string.

4. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).

5. Precision is in the first byte. Scale is in the second byte.

Related tasks:

v “Describing a SELECT Statement in a Dynamic SQL Program” on page 143
v “Acquiring Storage to Hold a Row” on page 144
v “Processing the Cursor in a Dynamic SQL Program” on page 145

Processing Interactive SQL Statements in Dynamic SQL Programs

An application using dynamic SQL can be written to process arbitrary SQL
statements. For example, if an application accepts SQL statements from a user,
the application must be able to execute the statements without any prior
knowledge of the statements.

Procedure:

150 Programming Client Applications

Use the PREPARE and DESCRIBE statements with an SQLDA structure so
that the application can determine the type of SQL statement being executed,
and act accordingly.

Related concepts:

v “Determination of Statement Type in Dynamic SQL Programs” on page 151

Determination of Statement Type in Dynamic SQL Programs

When an SQL statement is prepared, information concerning the type of
statement can be determined by examining the SQLDA structure. This
information is placed in the SQLDA structure either at statement preparation
time with the INTO clause, or by issuing a DESCRIBE statement against a
previously prepared statement.

In either case, the database manager places a value in the SQLD field of the
SQLDA structure, indicating the number of columns in the result table
generated by the SQL statement. If the SQLD field contains a zero (0), the
statement is not a SELECT statement. Since the statement is already prepared,
it can immediately be executed using the EXECUTE statement.

If the statement contains parameter markers, the USING clause must be
specified. The USING clause can specify either a list of host variables or an
SQLDA structure.

If the SQLD field is greater than zero, the statement is a SELECT statement
and must be processed as described in the following sections.

Related reference:

v “EXECUTE statement” in the SQL Reference, Volume 2

Processing Variable-List SELECT Statements in Dynamic SQL Programs

A varying-list SELECT statement is one in which the number and types of
columns that are to be returned are not known at precompilation time. In this
case, the application does not know in advance the exact host variables that
need to be declared to hold a row of the result table.

Procedure:

To process a variable-list SELECT statement, code your application to do the
following:
1. Declare an SQLDA.

An SQLDA structure must be used to process varying-list SELECT
statements.

2. PREPARE the statement using the INTO clause.

Chapter 5. Writing Dynamic SQL Programs 151

The application then determines whether the SQLDA structure declared
has enough SQLVAR elements. If it does not, the application allocates
another SQLDA structure with the required number of SQLVAR elements,
and issues an additional DESCRIBE statement using the new SQLDA.

3. Allocate the SQLVAR elements.
Allocate storage for the host variables and indicators needed for each
SQLVAR. This step involves placing the allocated addresses for the data
and indicator variables in each SQLVAR element.

4. Process the SELECT statement.
A cursor is associated with the prepared statement, opened, and rows are
fetched using the properly allocated SQLDA structure.

Related tasks:

v “Declaring the SQLDA Structure in a Dynamic SQL Program” on page 138
v “Preparing a Statement in Dynamic SQL Using the Minimum SQLDA

Structure” on page 140
v “Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL

Program” on page 142
v “Describing a SELECT Statement in a Dynamic SQL Program” on page 143
v “Acquiring Storage to Hold a Row” on page 144
v “Processing the Cursor in a Dynamic SQL Program” on page 145

Saving SQL Requests from End Users

If the users of your application can issue SQL requests from the application,
you may want to save these requests.

Procedure:

If your application allows users to save arbitrary SQL statements, you can
save them in a table with a column having a data type of VARCHAR, LONG
VARCHAR, CLOB, VARGRAPHIC, LONG VARGRAPHIC or DBCLOB. Note
that the VARGRAPHIC, LONG VARGRAPHIC, and DBCLOB data types are
only available in double-byte character set (DBCS) and Extended UNIX Code
(EUC) environments.

You must save the source SQL statements, not the prepared versions. This
means that you must retrieve and then prepare each statement before
executing the version stored in the table. In essence, your application prepares
an SQL statement from a character string and executes this statement
dynamically.

152 Programming Client Applications

Parameter Markers in Dynamic SQL Programs

The sections that follow describe how use parameter markers to provide
variable input to a dynamic SQL program, and briefly describe the sample
programs that use parameter markers.

Providing Variable Input to Dynamic SQL Using Parameter Markers

A dynamic SQL statement cannot contain host variables, because host variable
information (data type and length) is available only during application
precompilation. At execution time, the host variable information is not
available.

In dynamic SQL, parameter markers are used instead of host variables.
Parameter markers are indicated by a question mark (?), and indicate where a
host variable is to be substituted inside an SQL statement.

Procedure:

Assume that your application uses dynamic SQL, and that you want to be
able to perform a DELETE. A character string containing a parameter marker
might look like the following:

DELETE FROM TEMPL WHERE EMPNO = ?

When this statement is executed, a host variable or SQLDA structure is
specified by the USING clause of the EXECUTE statement. The contents of the
host variable are used when the statement executes.

The parameter marker takes on an assumed data type and length that is
dependent on the context of its use inside the SQL statement. If the data type
of a parameter marker is not obvious from the context of the statement in
which it is used, use a CAST to specify the type. Such a parameter marker is
considered a typed parameter marker. Typed parameter markers will be treated
like a host variable of the given type. For example, the statement SELECT ?
FROM SYSCAT.TABLES is not valid because DB2 does not know the type of the
result column. However, the statement SELECT CAST(? AS INTEGER) FROM
SYSCAT.TABLES is valid because the cast indicates that the parameter marker
represents an INTEGER, so DB2 knows the type of the result column.

If the SQL statement contains more than one parameter marker, the USING
clause of the EXECUTE statement must either specify a list of host variables
(one for each parameter marker), or it must identify an SQLDA that has an
SQLVAR entry for each parameter marker. (Note that for LOBs, there are two
SQLVARs per parameter marker.) The host variable list or SQLVAR entries are
matched according to the order of the parameter markers in the statement,
and they must have compatible data types.

Chapter 5. Writing Dynamic SQL Programs 153

Note: Using a parameter marker with dynamic SQL is like using host
variables with static SQL. In either case, the optimizer does not use
distribution statistics, and possibly may not choose the best access plan.

The rules that apply to parameter markers are described with the PREPARE
statement.

Related reference:

v “PREPARE statement” in the SQL Reference, Volume 2

Example of Parameter Markers in a Dynamic SQL Program

The following examples show how to use parameter markers in a dynamic
SQL program:
v C/C++ (dbuse.sqc/dbuse.sqC)

The fuction DynamicStmtWithMarkersEXECUTEusingHostVars() in the
C-language sample dbuse.sqc shows how to perform a delete using a
parameter marker with a host variable:
EXEC SQL BEGIN DECLARE SECTION;

char hostVarStmt1[50];
short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */
strcpy(hostVarStmt1, "DELETE FROM org WHERE deptnumb = ?");
EXEC SQL PREPARE Stmt1 FROM :hostVarStmt1;

/* execute the statement for hostVarDeptnumb = 15 */
hostVarDeptnumb = 15;
EXEC SQL EXECUTE Stmt1 USING :hostVarDeptnumb;

v JDBC (DbUse.java)
The function execPreparedStatementWithParam() in the JDBC sample
DbUse.java shows how to perform a delete using parameter markers:
// prepare the statement with parameter markers
PreparedStatement prepStmt = con.prepareStatement(

" DELETE FROM org WHERE deptnumb <= ? AND division = ? ");

// execute the statement
prepStmt.setInt(1, 70);
prepStmt.setString(2, "Eastern");
prepStmt.execute();

// close the statement
prepStmt.close();

v COBOL (varinp.sqb)
The following example is from the COBOL sample varinp.sqb, and shows
how to use a parameter marker in search and update conditions:

154 Programming Client Applications

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 pname pic x(10).
01 dept pic s9(4) comp-5.
01 st pic x(127).
01 parm-var pic x(5).

EXEC SQL END DECLARE SECTION END-EXEC.

move "SELECT name, dept FROM staff
- " WHERE job = ? FOR UPDATE OF job" to st.

EXEC SQL PREPARE s1 FROM :st END-EXEC.

EXEC SQL DECLARE c1 CURSOR FOR s1 END-EXEC.

move "Mgr" to parm-var.
EXEC SQL OPEN c1 USING :parm-var END-EXEC

move "Clerk" to parm-var.
move "UPDATE staff SET job = ? WHERE CURRENT OF c1" to st.
EXEC SQL PREPARE s2 from :st END-EXEC.

* call the FETCH and UPDATE loop.
perform Fetch-Loop thru End-Fetch-Loop

until SQLCODE not equal 0.

EXEC SQL CLOSE c1 END-EXEC.

Related concepts:

v “Error Message Retrieval in an Application” on page 126

Related samples:

v “dbuse.out -- HOW TO USE A DATABASE (C)”
v “dbuse.sqc -- How to use a database (C)”
v “dbuse.out -- HOW TO USE A DATABASE (C++)”
v “dbuse.sqC -- How to use a database (C++)”
v “DbUse.java -- How to use a database (JDBC)”
v “DbUse.out -- HOW TO USE A DATABASE (JDBC)”

DB2 Call Level Interface (CLI) Compared to Dynamic SQL

The sections that follow describe the differences between DB2 CLI and
dynamic SQL, the advantages that DB2 CLI has over dynamic SQL, and when
you should use DB2 CLI or dynamic SQL.

DB2 Call Level Interface (CLI) versus Embedded Dynamic SQL

An application that uses an embedded SQL interface requires a precompiler to
convert the SQL statements into code, which is then compiled, bound to the
database, and executed. In contrast, a DB2 CLI application does not have to

Chapter 5. Writing Dynamic SQL Programs 155

be precompiled or bound, but instead uses a standard set of functions to
execute SQL statements and related services at run time.

This difference is important because, traditionally, precompilers have been
specific to each database product, which effectively ties your applications to
that product. DB2 CLI enables you to write portable applications that are
independent of any particular database product. This independence means
DB2 CLI applications do not have to be recompiled or rebound to access
different DB2® databases, including host system databases. They just connect
to the appropriate database at run time.

The following are differences and similarities between DB2 CLI and
embedded SQL:
v DB2 CLI does not require the explicit declaration of cursors. DB2 CLI has a

supply of cursors that get used as needed. The application can then use the
generated cursor in the normal cursor fetch model for multiple row SELECT
statements and positioned UPDATE and DELETE statements.

v The OPEN statement is not used in DB2 CLI. Instead, the execution of a
SELECT automatically causes a cursor to be opened.

v Unlike embedded SQL, DB2 CLI allows the use of parameter markers on
the equivalent of the EXECUTE IMMEDIATE statement (the SQLExecDirect()
function).

v A COMMIT or ROLLBACK in DB2 CLI is typically issued via the SQLEndTran()
function call rather than by executing it as an SQL statement, however,
doing do is permitted.

v DB2 CLI manages statement related information on behalf of the
application, and provides an abstract object to represent the information
called a statement handle. This handle eliminates the need for the application
to use product specific data structures.

v Similar to the statement handle, the environment handle and connection handle
provide a means to refer to global variables and connection specific
information. The descriptor handle describes either the parameters of an SQL
statement or the columns of a result set.

v DB2 CLI applications can dynamically describe parameters in an SQL
statement the same way that CLI and embedded SQL applications describe
result sets. This enables CLI applications to dynamically process SQL
statements that contain parameter markers without knowing the data type
of those parameter markers in advance. When the SQL statement is
prepared, describe information is returned detailing the data types of the
parameters.

v DB2 CLI uses the SQLSTATE values defined by the X/Open SQL CAE
specification. Although the format and most of the values are consistent

156 Programming Client Applications

with values used by the IBM® relational database products, there are
differences. (There are also differences between ODBC SQLSTATES and the
X/Open defined SQLSTATES).

Despite these differences, there is an important common concept between
embedded SQL and DB2 CLI: DB2 CLI can execute any SQL statement that can
be prepared dynamically in embedded SQL.

Note: DB2 CLI can also accept some SQL statements that cannot be prepared
dynamically, such as compound SQL statements.

Each DBMS may have additional statements that you can dynamically
prepare. In this case, DB2 CLI passes the statements directly to the DBMS.
There is one exception: the COMMIT and ROLLBACK statements can be
dynamically prepared by some DBMSs but will be intercepted by DB2 CLI
and treated as an appropriate SQLEndTran() request. However, it is
recommeded you use the SQLEndTran() function to specify either the
COMMIT or ROLLBACK statement.

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Advantages of DB2 CLI over Embedded SQL

The DB2 CLI interface has several key advantages over embedded SQL.
v It is ideally suited for a client-server environment, in which the target

database is not known when the application is built. It provides a consistent
interface for executing SQL statements, regardless of which database server
the application is connected to.

v It increases the portability of applications by removing the dependence on
precompilers. Applications are distributed not as embedded SQL source
code which must be preprocessed for each database product, but as
compiled applications or run time libraries.

v Individual DB2 CLI applications do not need to be bound to each database,
only bind files shipped with DB2 CLI need to be bound once for all DB2
CLI applications. This can significantly reduce the amount of management
required for the application once it is in general use.

v DB2 CLI applications can connect to multiple databases, including multiple
connections to the same database, all from the same application. Each
connection has its own commit scope. This is much simpler using CLI than
using embedded SQL where the application must make use of
multi-threading to achieve the same result.

v DB2 CLI eliminates the need for application controlled, often complex data
areas, such as the SQLDA and SQLCA, typically associated with embedded

Chapter 5. Writing Dynamic SQL Programs 157

SQL applications. Instead, DB2 CLI allocates and controls the necessary
data structures, and provides a handle for the application to reference them.

v DB2 CLI enables the development of multi-threaded thread-safe
applications where each thread can have its own connection and a separate
commit scope from the rest. DB2 CLI achieves this by eliminating the data
areas described above, and associating all such data structures that are
accessible to the application with a specific handle. Unlike embedded SQL,
a multi-threaded CLI application does not need to call any of the context
management DB2® APIs; this is handled by the DB2 CLI driver
automatically.

v DB2 CLI provides enhanced parameter input and fetching capability,
allowing arrays of data to be specified on input, retrieving multiple rows of
a result set directly into an array, and executing statements that generate
multiple result sets.

v DB2 CLI provides a consistent interface to query catalog (Tables, Columns,
Foreign Keys, Primary Keys, etc.) information contained in the various
DBMS catalog tables. The result sets returned are consistent across DBMSs.
This shields the application from catalog changes across releases of database
servers, as well as catalog differences amongst different database servers;
thereby saving applications from writing version specific and server specific
catalog queries.

v Extended data conversion is also provided by DB2 CLI, requiring less
application code when converting information between various SQL and C
data types.

v DB2 CLI incorporates both the ODBC and X/Open CLI functions, both of
which are accepted industry specifications. DB2 CLI is also aligned with the
ISO CLI standard. Knowledge that application developers invest in these
specifications can be applied directly to DB2 CLI development, and vice
versa. This interface is intuitive to grasp for those programmers who are
familiar with function libraries but know little about product specific
methods of embedding SQL statements into a host language.

v DB2 CLI provides the ability to retrieve multiple rows and result sets
generated from a stored procedure residing on a DB2 Universal Database
(or DB2 Universal Database for OS/390 and z/OS version 5 or later) server.
However, note that this capability exists for Version 5 DB2 Universal
Database clients using embedded SQL if the stored procedure resides on a
server accessible from a DataJoiner® Version 2 server.

v DB2 CLI offers more extensive support for scrollable cursors. With
scrollable cursors, you can scroll through a cursor as follows:
– Forward by one or more rows
– Backward by one or more rows
– From the first row by one or more rows
– From the last row by one or more rows.

158 Programming Client Applications

Scrollable cursors can be used in conjunction with array output. You can
declare an updateable cursor as scrollable then move forward or backward
through the result set by one or more rows. You can also fetch rows by
specifying an offset from:
– The current row
– The beginning or end of the result set
– A specific row you have previously set with a bookmark.

When to Use DB2 CLI or Embedded SQL

Which interface you choose depends on your application.

DB2 CLI is ideally suited for query-based graphical user interface (GUI)
applications that require portability. The advantages listed above, may make
using DB2 CLI seem like the obvious choice for any application. There is
however, one factor that must be considered, the comparison between static
and dynamic SQL. It is much easier to use static SQL in embedded
applications.

Static SQL has several advantages:
v Performance

Dynamic SQL is prepared at run time, static SQL is prepared at precompile
time. As well as requiring more processing, the preparation step may incur
additional network-traffic at run time. The additional network traffic can be
avoided if the DB2 CLI application makes use of deferred prepare (which is
the default behavior).
It is important to note that static SQL will not always have better
performance than dynamic SQL. Dynamic SQL is prepared at runtime and
uses the database statistics available at that time, whereas static SQL makes
use of database statistics available at BIND time. Dynamic SQL can make
use of changes to the database, such as new indexes, to choose the optimal
access plan, resulting in potentially better performance than the same SQL
executed as static SQL. In addition, precompilation of dynamic SQL
statements can be avoided if they are cached.

v Encapsulation and Security
In static SQL, the authorizations to access objects (such as a table, view) are
associated with a package and are validated at package binding time. This
means that database administrators need only to grant execute on a
particular package to a set of users (thus encapsulating their privileges in
the package) without having to grant them explicit access to each database
object. In dynamic SQL, the authorizations are validated at run time on a
per statement basis; therefore, users must be granted explicit access to each
database object. This permits these users access to parts of the object that
they do not have a need to access.

Chapter 5. Writing Dynamic SQL Programs 159

v Embedded SQL is supported in languages other than C or C++.
v For fixed query selects, embedded SQL is simpler.

If an application requires the advantages of both interfaces, it is possible to
make use of static SQL within a DB2 CLI application by creating a stored
procedure that contains the static SQL. The stored procedure is called from
within a DB2 CLI application and is executed on the server. Once the stored
procedure is created, any DB2 CLI or ODBC application can call it.

It is also possible to write a mixed application that uses both DB2 CLI and
embedded SQL, taking advantage of their respective benefits. In this case,
DB2 CLI is used to provide the base application, with key modules written
using static SQL for performance or security reasons. This complicates the
application design, and should only be used if stored procedures do not meet
the applications requirements.

Ultimately, the decision on when to use each interface, will be based on
individual preferences and previous experience rather than on any one factor.

Related concepts:

v “CLI/ODBC/JDBC Trace Facility” on page 285

Related tasks:

v “Preparing and Executing SQL Statements in CLI Applications” in the CLI
Guide and Reference, Volume 1

v “Issuing SQL Statements in CLI Applications” in the CLI Guide and
Reference, Volume 1

v “Creating Static SQL with CLI/ODBC/JDBC Static Profiling” in the CLI
Guide and Reference, Volume 1

160 Programming Client Applications

Chapter 6. Programming in C and C++

Programming Considerations for C/C++ . . 161
Trigraph Sequences for C and C++ 162
Input and Output Files for C and C++ . . . 162
Include Files 163

Include Files for C and C++ 163
Include Files in C and C++ 166

Embedded SQL Statements in C and C++ 167
Host Variables in C and C++ 168

Host Variables in C and C++ 169
Host Variable Names in C and C++. . . 170
Host Variable Declarations in C and C++ 171
Syntax for Numeric Host Variables in C
and C++ 172
Syntax for Fixed and Null-Terminated
Character Host Variables in C and C++ . 173
Syntax for Variable-Length Character
Host Variables in C or C++ 174
Indicator Variables in C and C++ . . . 176
Graphic Host Variables in C and C++ . . 176
Syntax for Graphic Declaration of
Single-Graphic and Null-Terminated
Graphic Forms in C and C++ 177
Syntax for Graphic Declaration of
VARGRAPHIC Structured Form in C or
C++ 178
Syntax for Large Object (LOB) Host
Variables in C or C++ 179
Syntax for Large Object (LOB) Locator
Host Variables in C or C++ 182
Syntax for File Reference Host Variable
Declarations in C or C++ 183

Host Variable Initialization in C and C++ 183
C Macro Expansion 184
Host Structure Support in C and C++ . . 185
Indicator Tables in C and C++ 187
Null-Terminated Strings in C and C++ 188
Host Variables Used as Pointer Data
Types in C and C++ 190
Class Data Members Used as Host
Variables in C and C++ 191
Qualification and Member Operators in C
and C++ 192
Multi-Byte Character Encoding in C and
C++ 192
wchar_t and sqldbchar Data Types in C
and C++ 193
WCHARTYPE Precompiler Option in C
and C++ 194
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations in C and C++ . . 197
SQL Declare Section with Host Variables
for C and C++ 198

Data Type Considerations for C and C++ 200
Supported SQL Data Types in C and C++ 200
FOR BIT DATA in C and C++. 204
C and C++ Data Types for Procedures,
Functions, and Methods 204

SQLSTATE and SQLCODE Variables in C
and C++ 206

Programming Considerations for C/C++

Special host language programming considerations are discussed in the
following topics. Included is information on language restrictions,
host-language-specific include files, embedding SQL statements, host
variables, and supported data types for host variables.

Related reference:

v “C/C++ Samples” in the Application Development Guide: Building and
Running Applications

© Copyright IBM Corp. 1993-2002 161

Trigraph Sequences for C and C++

Some characters from the C or C++ character set are not available on all
keyboards. These characters can be entered into a C or C++ source program
using a sequence of three characters called a trigraph. Trigraphs are not
recognized in SQL statements. The precompiler recognizes the following
trigraphs within host variable declarations:

Trigraph Definition

??(Left bracket '['

??) Right bracket ']'

??< Left brace '{'

??> Right brace '}'

The remaining trigraphs listed below may occur elsewhere in a C or C++
source program:

Trigraph Definition

??= Hash mark '#'

??/ Back slash '\'

??’ Caret '^'

??! Vertical Bar '|'

??– Tilde '~'

Input and Output Files for C and C++

By default, the input file can have the following extensions:

.sqc For C files on all supported platforms

.sqC For C++ files on UNIX® platforms

.sqx For C++ files on Windows® operating systems

By default, the corresponding precompiler output files have the following
extensions:

.c For C files on all supported platforms

.C For C++ files on UNIX platforms

.cxx For C++ files on Windows operating systems

162 Programming Client Applications

You can use the OUTPUT precompile option to override the name and path of
the output modified source file. If you use the TARGET C or TARGET
CPLUSPLUS precompile option, the input file does not need a particular
extension.

Include Files

The following sections describe include files for C and C++.

Include Files for C and C++

The host-language-specific include files (header files) for C and C++ have the
file extension .h. The include files that are intended to be used in your
applications are described below.

SQL (sql.h)
This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines system
constants.

SQLADEF (sqladef.h)
This file contains function prototypes used by precompiled C and C++
applications.

SQLAPREP (sqlaprep.h)
This file contains definitions required to write your own precompiler.

SQLCA (sqlca.h)
This file defines the SQL Communication Area (SQLCA) structure.
The SQLCA contains variables that are used by the database manager
to provide an application with error information about the execution
of SQL statements and API calls.

SQLCLI (sqlcli.h)
This file contains the function prototypes and constants needed to
write a Call Level Interface (DB2 CLI) application. The functions in
this file are common to both X/Open Call Level Interface and ODBC
Core Level.

SQLCLI1 (sqlcli1.h)
This file contains the function prototypes and constants needed to
write a Call Level Interface (DB2 CLI) that makes use of the more
advanced features in DB2 CLI. Many of the functions in this file are
common to both X/Open Call Level Interface and ODBC Level 1. In
addition, this file also includes X/Open-only functions and
DB2-specific functions.

This file includes both sqlcli.h and sqlext.h (which contains ODBC
Level2 API definitions).

Chapter 6. Programming in C and C++ 163

SQLCODES (sqlcodes.h)
This file defines constants for the SQLCODE field of the SQLCA
structure.

SQLDA (sqlda.h)
This file defines the SQL Descriptor Area (SQLDA) structure. The
SQLDA is used to pass data between an application and the database
manager.

SQLEAU (sqleau.h)
This file contains constant and structure definitions required for the
DB2 security audit APIs. If you use these APIs, you need to include
this file in your program. This file also contains constant and keyword
value definitions for fields in the audit trail record. These definitions
can be used by external or vendor audit trail extract programs.

SQLENV (sqlenv.h)
This file defines language-specific calls for the database environment
APIs, and the structures, constants, and return codes for those
interfaces.

SQLEXT (sqlext.h)
This file contains the function prototypes and constants of those
ODBC Level 1 and Level 2 APIs that are not part of the X/Open Call
Level Interface specification and is therefore used with the permission
of Microsoft Corporation.

SQLE819A (sqle819a.h)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE API.

SQLE819B (sqle819b.h)
If the code page of the database is 819 (ISO Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

SQLE850A (sqle850a.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 500 (EBCDIC International) binary collation. This file is
used by the CREATE DATABASE API.

SQLE850B (sqle850b.h)
If the code page of the database is 850 (ASCII Latin-1), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 037 (EBCDIC US English) binary collation. This file is
used by the CREATE DATABASE API.

164 Programming Client Applications

SQLE932A (sqle932a.h)
If the code page of the database is 932 (ASCII Japanese), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 5035 (EBCDIC Japanese) binary collation. This file is used
by the CREATE DATABASE API.

SQLE932B (sqle932b.h)
If the code page of the database is 932 (ASCII Japanese), this sequence
sorts character strings that are not FOR BIT DATA according to the
host CCSID 5026 (EBCDIC Japanese) binary collation. This file is used
by the CREATE DATABASE API.

SQLJACB (sqljacb.h)
This file defines constants, structures, and control blocks for the DB2
Connect interface.

SQLMON (sqlmon.h)
This file defines language-specific calls for the database system
monitor APIs, and the structures, constants, and return codes for those
interfaces.

SQLSTATE (sqlstate.h)
This file defines constants for the SQLSTATE field of the SQLCA
structure.

SQLSYSTM (sqlsystm.h)
This file contains the platform-specific definitions used by the
database manager APIs and data structures.

SQLUDF (sqludf.h)
This file defines constants and interface structures for writing
user-defined functions (UDFs).

SQLUTIL (sqlutil.h)
This file defines the language-specific calls for the utility APIs, and the
structures, constants, and codes required for those interfaces.

SQLUV (sqluv.h)
This file defines structures, constants, and prototypes for the
asynchronous Read Log API, and APIs used by the table load and
unload vendors.

SQLUVEND (sqluvend.h)
This file defines structures, constants, and prototypes for the APIs to
be used by the storage management vendors.

SQLXA (sqlxa.h)
This file contains function prototypes and constants used by
applications that use the X/Open XA Interface.

Related concepts:

Chapter 6. Programming in C and C++ 165

v “Include Files in C and C++” on page 166

Include Files in C and C++

There are two methods for including files: the EXEC SQL INCLUDE statement
and the #include macro. The precompiler will ignore the #include, and only
process files included with the EXEC SQL INCLUDE statement.

To locate files included using EXEC SQL INCLUDE, the DB2® C precompiler
searches the current directory first, then the directories specified by the
DB2INCLUDE environment variable. Consider the following examples:
v EXEC SQL INCLUDE payroll;

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the C precompiler searches for payroll.sqc, then
payroll.h, in each directory in which it looks. On UNIX® operating
systems, the C++ precompiler searches for payroll.sqC, then payroll.sqx,
then payroll.hpp, then payroll.h in each directory in which it looks. On
Windows-32 bit operating systems, the C++ precompiler searches for
payroll.sqx, then payroll.hpp, then payroll.h in each directory in which it
looks.

v EXEC SQL INCLUDE ’pay/payroll.h’;

If the file name is enclosed in quotation marks, as above, no extension is
added to the name.
If the file name in quotation marks does not contain an absolute path, then
the contents of DB2INCLUDE are used to search for the file, prepended to
whatever path is specified in the INCLUDE file name. For example, on
UNIX-based systems, if DB2INCLUDE is set to ‘/disk2:myfiles/c’, the
C/C++ precompiler searches for ‘./pay/payroll.h’, then
‘/disk2/pay/payroll.h’, and finally ‘./myfiles/c/pay/payroll.h’. The path
where the file is actually found is displayed in the precompiler messages.
On Windows-based operating systems, substitute back slashes (\) for the
forward slashes in the above example.

Note: The setting of DB2INCLUDE is cached by the command line processor.
To change the setting of DB2INCLUDE after any CLP commands have
been issued, enter the TERMINATE command, then reconnect to the
database and precompile as usual.

To help relate compiler errors back to the original source the precompiler
generates ANSI #line macros in the output file. This allows the compiler to
report errors using the file name and line number of the source or included
source file, rather than the precompiler output.

166 Programming Client Applications

However, if you specify the PREPROCESSOR option, all the #line macros
generated by the precompiler reference the preprocessed file from the external
C preprocessor.

Some debuggers and other tools that relate source code to object code do not
always work well with the #line macro. If the tool you want to use behaves
unexpectedly, use the NOLINEMACRO option (used with DB2 PREP) when
precompiling. This option prevents the #line macros from being generated.

Related concepts:

v “C Macro Expansion” on page 184

Related reference:

v “PREPARE statement” in the SQL Reference, Volume 2

v “Include Files for C and C++” on page 163

Embedded SQL Statements in C and C++

Embedded SQL statements consist of the following three elements:

Element Correct Syntax

Statement initializer EXEC SQL

Statement string Any valid SQL statement

Statement terminator semicolon (;)

For example:
EXEC SQL SELECT col INTO :hostvar FROM table;

The following rules apply to embedded SQL statements:
v You can begin the SQL statement string on the same line as the keyword

pair or a separate line. The statement string can be several lines long. Do
not split the EXEC SQL keyword pair between lines.

v You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This
may cause indeterminate errors.
C/C++ comments can be placed before the statement initializer or after the
statement terminator.

v Multiple SQL statements and C/C++ statements may be placed on the same
line. For example:

EXEC SQL OPEN c1; if (SQLCODE >= 0) EXEC SQL FETCH c1 INTO :hv;

v The SQL precompiler leaves carriage returns, line feeds, and TABs in a
quoted string as is.

Chapter 6. Programming in C and C++ 167

v SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--) followed
by a string of zero or more characters, and terminated by a line end. Do not
place SQL comments after the SQL statement terminator. Comments after
the terminator cause compilation errors because they appear to be part of
the C/C++ language.
You can use comments in a static statement string wherever blanks are
allowed. Use the C/C++ comment delimiters /* */, or the SQL comment
symbol (--). //-style C++ comments are not permitted within static SQL
statements, but they may be used elsewhere in your program. The
precompiler removes comments before processing the SQL statement. You
cannot use the C and C++ comment delimiters /* */ or // in a dynamic
SQL statement. However, you can use them elsewhere in your program.

v You can continue SQL string literals and delimited identifiers over line
breaks in C and C++ applications. To do this, use a back slash (\) at the
end of the line where the break is desired. For example:

EXEC SQL SELECT "NA\
ME" INTO :n FROM staff WHERE name=’Sa\
nders’;

Any new line characters (such as carriage return and line feed) are not
included in the string or delimited identifier.

v Substitution of white space characters, such as end-of-line and TAB
characters, occurs as follows:
– When they occur outside quotation marks (but inside SQL statements),

end-of-lines and TABs are substituted by a single space.
– When they occur inside quotation marks, the end-of-line characters

disappear, provided the string is continued properly for a C program.
TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, UNIX-based systems use a line feed.

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Host Variables in C and C++

The sections that follow describe how to declare and use host variables in C
and C++ programs.

168 Programming Client Applications

Host Variables in C and C++

Host variables are C or C++ language variables that are referenced within
SQL statements. They allow an application to pass input data to and receive
output data from the database manager. After the application is precompiled,
host variables are used by the compiler as any other C/C++ variable. Follow
the rules described in the following sections when naming, declaring, and
using host variables.

In applications that manually construct the SQLDA, long variables cannot be
used when sqlvar::sqltype==SQL_TYP_INTEGER. Instead, sqlint32 types must
be used. This problem is identical to using long variables in host variable
declarations, except that with a manually constructed SQLDA, the
precompiler will not uncover this error and run time errors will occur.

Any long and unsigned long casts that are used to access sqlvar::sqldata
information must be changed to sqlint32 and sqluint32. Val members for the
sqloptions and sqla_option structures are declared as sqluintptr. Therefore,
assignment of pointer members into sqla_option::val or sqloptions::val
members should use sqluintptr casts rather than unsigned long casts. This
change will not cause run-time problems in 64-bit UNIX® platforms, but
should be made in preparation for 64-bit Windows® NT applications, where
the long type is only 32-bit.

Related concepts:

v “Host Variable Names in C and C++” on page 170
v “Host Variable Declarations in C and C++” on page 171
v “Syntax for Fixed and Null-Terminated Character Host Variables in C and

C++” on page 173
v “Indicator Variables in C and C++” on page 176
v “Graphic Host Variables in C and C++” on page 176
v “Host Variable Initialization in C and C++” on page 183
v “Host Structure Support in C and C++” on page 185
v “SQL Declare Section with Host Variables for C and C++” on page 198

Related reference:

v “Syntax for Numeric Host Variables in C and C++” on page 172
v “Syntax for Variable-Length Character Host Variables in C or C++” on page

174
v “Syntax for Large Object (LOB) Host Variables in C or C++” on page 179
v “Syntax for Large Object (LOB) Locator Host Variables in C or C++” on

page 182

Chapter 6. Programming in C and C++ 169

v “Syntax for File Reference Host Variable Declarations in C or C++” on page
183

Host Variable Names in C and C++

The SQL precompiler identifies host variables by their declared name. The
following rules apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2®, and db2,

which are reserved for system use. For example:
EXEC SQL BEGIN DECLARE SECTION;

char varsql; /* allowed */
char sqlvar; /* not allowed */
char SQL_VAR; /* not allowed */

EXEC SQL END DECLARE SECTION;

v The precompiler considers host variable names as global to a module. This
does not mean, however, that host variables have to be declared as global
variables; it is perfectly acceptable to declare host variables as local
variables within functions. For example, the following code will work
correctly:

void f1(int i)
{
EXEC SQL BEGIN DECLARE SECTION;

short host_var_1;
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL1 INTO :host_var_1 from TBL1;
}
void f2(int i)
{
EXEC SQL BEGIN DECLARE SECTION;

short host_var_2;
EXEC SQL END DECLARE SECTION;
EXEC SQL INSERT INTO TBL1 VALUES (:host_var_2);
}

It is also possible to have several local host variables with the same name,
as long as they all have the same type and size. To do this, declare the first
occurrence of the host variable to the precompiler between BEGIN
DECLARE SECTION and END DECLARE SECTION statements, and leave
subsequent declarations of the variable out of declare sections. The
following code shows an example of this:

void f3(int i)
{
EXEC SQL BEGIN DECLARE SECTION;

char host_var_3[25];
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT COL2 INTO :host_var_3 FROM TBL2;
}
void f4(int i)

170 Programming Client Applications

{
char host_var_3[25];
EXEC SQL INSERT INTO TBL2 VALUES (:host_var_3);
}

Because f3 and f4 are in the same module, and host_var_3 has the same
type and length in both functions, a single declaration to the precompiler is
sufficient to use it in both places.

Related concepts:

v “Host Variable Declarations in C and C++” on page 171

Host Variable Declarations in C and C++

An SQL declare section must be used to identify host variable declarations.
This alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

The C/C++ precompiler only recognizes a subset of valid C or C++
declarations as valid host variable declarations. These declarations define
either numeric or character variables. Typedefs for host variable types are not
allowed. Host variables can be grouped into a single host structure. You can
declare C++ class data members as host variables.

A numeric host variable can be used as an input or output variable for any
numeric SQL input or output value. A character host variable can be used as
an input or output variable for any character, date, time, or timestamp SQL
input or output value. The application must ensure that output variables are
long enough to contain the values that they receive.

Related concepts:

v “Syntax for Fixed and Null-Terminated Character Host Variables in C and
C++” on page 173

v “Graphic Host Variables in C and C++” on page 176
v “Host Structure Support in C and C++” on page 185
v “Class Data Members Used as Host Variables in C and C++” on page 191

Related tasks:

v “Declaring Host Variables with the db2dclgn Declaration Generator” on
page 35

v “Declaring Structured Type Host Variables” in the Application Development
Guide: Programming Server Applications

Related reference:

v “Syntax for Numeric Host Variables in C and C++” on page 172

Chapter 6. Programming in C and C++ 171

v “Syntax for Variable-Length Character Host Variables in C or C++” on page
174

Syntax for Numeric Host Variables in C and C++

Following is the syntax for declaring numeric host variables in C or C++.

Syntax for Numeric Host Variables in C or C++

^^
auto
extern
static
register

const
volatile

(1)
float

(2)
double

(3)
short

int
INTEGER (SQLTYPE 496)
BIGINT (SQLTYPE 492)

^

^ _

_

,

varname
= value

*
& const

volatile

; ^`

INTEGER (SQLTYPE 496)

sqlint32
(4)

long
int

BIGINT (SQLTYPE 492)

sqlint64
__int64
long long

int
(5)

long
int

172 Programming Client Applications

Notes:

1 REAL (SQLTYPE 480), length 4

2 DOUBLE (SQLTYPE 480), length 8

3 SMALLINT (SQLTYPE 500)

4 For maximum application portability, use sqlint32 and sqlint64
for INTEGER and BIGINT host variables, respectively. By default, the
use of long host variables results in the precompiler error SQL0402 on
platforms where long is a 64 bit quantity, such as 64 BIT UNIX. Use the
PREP option LONGERROR NO to force DB2 to accept long variables as
acceptable host variable types and treat them as BIGINT variables.

5 For maximum application portability, use sqlint32 and sqlint64
for INTEGER and BIGINT host variables, respectively. To use the
BIGINT data type, your platform must support 64 bit integer values. By
default, the use of long host variables results in the precompiler error
SQL0402 on platforms where long is a 64 bit quantity, such as 64 BIT
UNIX. Use the PREP option LONGERROR NO to force DB2 to accept
long variables as acceptable host variable types and treat them as
BIGINT variables.

Syntax for Fixed and Null-Terminated Character Host Variables in C and
C++

Following is the syntax for declaring fixed and null-terminated character host
variables in C or C++.

Syntax for Fixed and Null-Terminated Character Host Variables in C or C++

^^
auto
extern
static
register

const
volatile

char
unsigned

^

^ _

,

CHAR
C String = value

; ^`

CHAR

Chapter 6. Programming in C and C++ 173

_

(1)
varname

*
& const

volatile

C String

_

(2)
varname [length]
(varname)

*
& const

volatile

Notes:

1 CHAR (SQLTYPE 452), length 1

2 Null-terminated C string (SQLTYPE 460); length can be any valid
constant expression

Syntax for Variable-Length Character Host Variables in C or C++

Following is the syntax for declaring variable-length character host variables
in C or C++.

Syntax for Variable-Length Character Host Variables in C or C++

^^
auto
extern
static
register

const
volatile

struct
tag

^

^
(1)

{ short var1 ; char var2 [length] ; }
int unsigned

^

174 Programming Client Applications

^ _

_

,

varname
Values

*
& const

volatile

; ^`

Values

= { value-1 , value-2 }

Notes:

1 In form 2, length can be any valid constant expression. Its value after
evaluation determines if the host variable is VARCHAR (SQLTYPE
448) or LONG VARCHAR (SQLTYPE 456).

Variable-Length Character Host Variable Considerations:

1. Although the database manager converts character data to either form 1 or
form 2 whenever possible, form 1 corresponds to column types CHAR or
VARCHAR, while form 2 corresponds to column types VARCHAR and
LONG VARCHAR.

2. If form 1 is used with a length specifier [n], the value for the length
specifier after evaluation must be no greater than 32 672, and the string
contained by the variable should be null-terminated.

3. If form 2 is used, the value for the length specifier after evaluation must
be no greater than 32 700.

4. In form 2, var1 and var2 must be simple variable references (no operators),
and cannot be used as host variables (varname is the host variable).

5. varname can be a simple variable name, or it can include operators such as
*varname. See the description of pointer data types in C and C++ for more
information.

6. The precompiler determines the SQLTYPE and SQLLEN of all host
variables. If a host variable appears in an SQL statement with an indicator
variable, the SQLTYPE is assigned to be the base SQLTYPE plus one for
the duration of that statement.

7. The precompiler permits some declarations which are not syntactically
valid in C or C++. Refer to your compiler documentation if in doubt about
a particular declaration syntax.

Related concepts:

v “Host Variables Used as Pointer Data Types in C and C++” on page 190

Chapter 6. Programming in C and C++ 175

Indicator Variables in C and C++

Indicator variables should be declared as a short data type.

Related concepts:

v “Indicator Tables in C and C++” on page 187

Graphic Host Variables in C and C++

To handle graphic data in C or C++ applications, use host variables based on
either the wchar_t C/C++ data type or the sqldbchar data type provided by
DB2. You can assign these types of host variables to columns of a table that
are GRAPHIC, VARGRAPHIC, or DBCLOB. For example, you can update or
select DBCS data from GRAPHIC or VARGRAPHIC columns of a table.

There are three valid forms for a graphic host variable:
v Single-graphic form

Single-graphic host variables have an SQLTYPE of 468/469 that is
equivalent to the GRAPHIC(1) SQL data type.

v Null-terminated graphic form
Null-terminated refers to the situation where all the bytes of the last
character of the graphic string contain binary zeros ('\0's). They have an
SQLTYPE of 400/401.

v VARGRAPHIC structured form
VARGRAPHIC structured host variables have an SQLTYPE of 464/465 if
their length is between 1 and 16 336 bytes. They have an SQLTYPE of
472/473 if their length is between 2 000 and 16 350 bytes.

Related concepts:

v “Host Variable Names in C and C++” on page 170
v “Host Variable Declarations in C and C++” on page 171
v “Host Variable Initialization in C and C++” on page 183
v “Host Structure Support in C and C++” on page 185
v “Indicator Tables in C and C++” on page 187
v “Multi-Byte Character Encoding in C and C++” on page 192
v “wchar_t and sqldbchar Data Types in C and C++” on page 193
v “WCHARTYPE Precompiler Option in C and C++” on page 194

Related reference:

v “Syntax for Graphic Declaration of Single-Graphic and Null-Terminated
Graphic Forms in C and C++” on page 177

176 Programming Client Applications

v “Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C or
C++” on page 178

v “Syntax for Large Object (LOB) Host Variables in C or C++” on page 179
v “Syntax for Large Object (LOB) Locator Host Variables in C or C++” on

page 182
v “Syntax for File Reference Host Variable Declarations in C or C++” on page

183

Syntax for Graphic Declaration of Single-Graphic and Null-Terminated
Graphic Forms in C and C++

Following is the syntax for declaring a graphic host variable using the
single-graphic form and the null-terminated graphic form.

Syntax for Graphic Declaration of Single-Graphic Form and Null-Terminated
Graphic Form

^^
auto
extern
static
register

const
volatile

(1)

sqldbchar
wchar_t

_

,

CHAR
C String = value

^

^ ; ^`

CHAR

_

(2)
varname

*
& const

volatile

C String

_

(3)
varname [length]
(varname)

*
& const

volatile

Chapter 6. Programming in C and C++ 177

Notes:

1 To determine which of the two graphic types should be used, see the
description of the wchar_t and sqldbchar data types in C and C++.

2 GRAPHIC (SQLTYPE 468), length 1

3 Null-terminated graphic string (SQLTYPE 400)

Graphic Host Variable Considerations:

1. The single-graphic form declares a fixed-length graphic string host
variable of length 1 with SQLTYPE of 468 or 469.

2. value is an initializer. A wide-character string literal (L-literal) should be
used if the WCHARTYPE CONVERT precompiler option is used.

3. length can be any valid constant expression, and its value after evaluation
must be greater than or equal to 1, and not greater than the maximum
length of VARGRAPHIC, which is 16 336.

4. Null-terminated graphic strings are handled differently, depending on the
value of the standards level precompile option setting.

Related concepts:

v “Null-Terminated Strings in C and C++” on page 188
v “wchar_t and sqldbchar Data Types in C and C++” on page 193

Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C or
C++

Following is the syntax for declaring a graphic host variable using the
VARGRAPHIC structured form.

Syntax for Graphic Declaration of VARGRAPHIC Structured Form

^^
auto
extern
static
register

const
volatile

struct
tag

^

^
(1) (2)

{ short var-1 ; var-2 [length] ; }
int sqldbchar

wchar_t

^

178 Programming Client Applications

^ _

_

,

Variable ;

*
& const

volatile

^`

Variable:

variable-name
= { value-1 , value-2 }

Notes:

1 To determine which of the two graphic types should be used, see the
description of the wchar_t and sqldbchar data types in C and C++.

2 length can be any valid constant expression. Its value after evaluation
determines if the host variable is VARGRAPHIC (SQLTYPE 464) or
LONG VARGRAPHIC (SQLTYPE 472). The value of length must be
greater than or equal to 1, and not greater than the maximum length of
LONG VARGRAPHIC which is 16 350.

Graphic Declaration (VARGRAPHIC Structured Form) Considerations:

1. var-1 and var-2 must be simple variable references (no operators) and
cannot be used as host variables.

2. value-1 and value-2 are initializers for var-1 and var-2. value-1 must be an
integer and value-2 should be a wide-character string literal (L-literal) if the
WCHARTYPE CONVERT precompiler option is used.

3. The struct tag can be used to define other data areas, but itself cannot be
used as a host variable.

Related concepts:

v “wchar_t and sqldbchar Data Types in C and C++” on page 193

Syntax for Large Object (LOB) Host Variables in C or C++

Following is the syntax for declaring large object (LOB) host variables in C or
C++.

Syntax for Large Object (LOB) Host Variables in C or C++

Chapter 6. Programming in C and C++ 179

^^
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB
CLOB
DBCLOB

(1)
(length) ^

^ _

_

,

variable-name LOB Data

*
& const

volatile

; ^`

LOB Data

={init-len,″init-data″}
=SQL_BLOB_INIT(″init-data″)
=SQL_CLOB_INIT(″init-data″)
=SQL_DBCLOB_INIT(″init-data″)

Notes:

1 length can be any valid constant expression, in which the constant K, M,
or G can be used. The value of length after evaluation for BLOB and
CLOB must be 1 <= length <= 2 147 483 647. The value of length after
evaluation for DBCLOB must be 1 <= length <= 1 073 741 823.

LOB Host Variable Considerations:

1. The SQL TYPE IS clause is needed to distinguish the three LOB-types from
each other so that type checking and function resolution can be carried out
for LOB-type host variables that are passed to functions.

2. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G may be in mixed case.
3. The maximum length allowed for the initialization string ″init-data″ is

32 702 bytes, including string delimiters (the same as the existing limit on
C/C++ strings within the precompiler).

4. The initialization length, init-len, must be a numeric constant (i.e. it cannot
include K, M, or G).

5. A length for the LOB must be specified; that is, the following declaration
is not permitted:

SQL TYPE IS BLOB my_blob;

6. If the LOB is not initialized within the declaration, no initialization will be
done within the precompiler-generated code.

180 Programming Client Applications

7. If a DBCLOB is initialized, it is the user’s responsibility to prefix the string
with an ’L’ (indicating a wide-character string).

Note: Wide-character literals, for example, L"Hello", should only be used
in a precompiled program if the WCHARTYPE CONVERT
precompile option is selected.

8. The precompiler generates a structure tag which can be used to cast to the
host variable’s type.

BLOB Example:

Declaration:
static Sql Type is Blob(2M) my_blob=SQL_BLOB_INIT("mydata");

Results in the generation of the following structure:
static struct my_blob_t {

sqluint32 length;
char data[2097152];

} my_blob=SQL_BLOB_INIT("mydata");

CLOB Example:

Declaration:
volatile sql type is clob(125m) *var1, var2 = {10, "data5data5"};

Results in the generation of the following structure:
volatile struct var1_t {

sqluint32 length;
char data[131072000];

} * var1, var2 = {10, "data5data5"};

DBCLOB Example:

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclob1;

Precompiled with the WCHARTYPE NOCONVERT option, results in the
generation of the following structure:

struct my_dbclob1_t {
sqluint32 length;
sqldbchar data[30000];

} my_dbclob1;

Declaration:
SQL TYPE IS DBCLOB(30000) my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Chapter 6. Programming in C and C++ 181

Precompiled with the WCHARTYPE CONVERT option, results in the
generation of the following structure:

struct my_dbclob2_t {
sqluint32 length;
wchar_t data[30000];

} my_dbclob2 = SQL_DBCLOB_INIT(L"mydbdata");

Syntax for Large Object (LOB) Locator Host Variables in C or C++

Following in the syntax for declaring large object (LOB) locator host variables
in C or C++.

Syntax for Large Object (LOB) Locator Host Variables in C or C++

^^
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

^

^ _

,

Variable
; ^`

Variable

_ * variable-name
& const = init-value

volatile

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR, DBCLOB_LOCATOR
may be in mixed case.

2. init-value permits the initialization of pointer and reference locator
variables. Other types of initialization will have no meaning.

CLOB Locator Example (other LOB locator type declarations are similar):

Declaration:
SQL TYPE IS CLOB_LOCATOR my_locator;

Results in the generation of the following declaration:
sqlint32 my_locator;

182 Programming Client Applications

Syntax for File Reference Host Variable Declarations in C or C++

Following is the syntax for declaring file reference host variables in C or C++.

Syntax for File Reference Host Variables in C or C++

^^
auto
extern
static
register

const
volatile

SQL TYPE IS BLOB_FILE
CLOB_FILE
DBCLOB_FILE

_

,

Variable
^

^ ; ^`

Variable

_ * variable-name
& const = init-value

volatile

Note: SQL TYPE IS, BLOB_FILE, CLOB_FILE, DBCLOB_FILE may be in
mixed case.

CLOB File Reference Example (other LOB file reference type declarations are
similar):

Declaration:
static volatile SQL TYPE IS BLOB_FILE my_file;

Results in the generation of the following structure:
static volatile struct {

sqluint32 name_length;
sqluint32 data_length;
sqluint32 file_options;

char name[255];
} my_file;

Host Variable Initialization in C and C++

In C++ declare sections, you cannot initialize host variables using parentheses.
The following example shows the correct and incorrect methods of
initialization in a declare section:

Chapter 6. Programming in C and C++ 183

EXEC SQL BEGIN DECLARE SECTION;
short my_short_2 = 5; /* correct */
short my_short_1(5); /* incorrect */

EXEC SQL END DECLARE SECTION;

C Macro Expansion

The C/C++ precompiler cannot directly process any C macro used in a
declaration within a declare section. Instead, you must first preprocess the
source file with an external C preprocessor. To do this, specify the exact
command for invoking a C preprocessor to the precompiler through the
PREPROCESSOR option.

When you specify the PREPROCESSOR option, the precompiler first processes
all the SQL INCLUDE statements by incorporating the contents of all the files
referred to in the SQL INCLUDE statement into the source file. The
precompiler then invokes the external C preprocessor using the command you
specify with the modified source file as input. The preprocessed file, which
the precompiler always expects to have an extension of .i, is used as the new
source file for the rest of the precompiling process.

Any #line macro generated by the precompiler no longer references the
original source file, but instead references the preprocessed file. To relate any
compiler errors back to the original source file, retain comments in the
preprocessed file. This helps you to locate various sections of the original
source files, including the header files. The option to retain comments is
commonly available in C preprocessors, and you can include the option in the
command you specify through the PREPROCESSOR option. You should not
have the C preprocessor output any #line macros itself, as they may be
incorrectly mixed with ones generated by the precompiler.

Notes on Using Macro Expansion:

1. The command you specify through the PREPROCESSOR option should
include all the desired options, but not the name of the input file. For
example, for IBM® C on AIX® you can use the option:

xlC -P -DMYMACRO=1

2. The precompiler expects the command to generate a preprocessed file with
a .i extension. However, you cannot use redirection to generate the
preprocessed file. For example, you cannot use the following option to
generate a preprocessed file:

xlC -E > x.i

3. Any errors the external C preprocessor encounters are reported in a file
with a name corresponding to the original source file, but with a .err
extension.

For example, you can use macro expansion in your source code as follows:

184 Programming Client Applications

#define SIZE 3

EXEC SQL BEGIN DECLARE SECTION;
char a[SIZE+1];
char b[(SIZE+1)*3];
struct
{

short length;
char data[SIZE*6];

} m;
SQL TYPE IS BLOB(SIZE+1) x;
SQL TYPE IS CLOB((SIZE+2)*3) y;
SQL TYPE IS DBCLOB(SIZE*2K) z;

EXEC SQL END DECLARE SECTION;

The previous declarations resolve to the following after you use the
PREPROCESSOR option:

EXEC SQL BEGIN DECLARE SECTION;
char a[4];
char b[12];
struct
{

short length;
char data[18];

} m;
SQL TYPE IS BLOB(4) x;
SQL TYPE IS CLOB(15) y;
SQL TYPE IS DBCLOB(6144) z;

EXEC SQL END DECLARE SECTION;

Host Structure Support in C and C++

With host structure support, the C/C++ precompiler allows host variables to
be grouped into a single host structure. This feature provides a shorthand for
referencing that same set of host variables in an SQL statement. For example,
the following host structure can be used to access some of the columns in the
STAFF table of the SAMPLE database:

struct tag
{

short id;
struct
{

short length;
char data[10];

} name;
struct
{

short years;
double salary;

} info;
} staff_record;

Chapter 6. Programming in C and C++ 185

The fields of a host structure can be any of the valid host variable types. Valid
types include all numeric, character, and large object types. Nested host
structures are also supported up to 25 levels. In the example above, the field
info is a sub-structure, whereas the field name is not, as it represents a
VARCHAR field. The same principle applies to LONG VARCHAR,
VARGRAPHIC and LONG VARGRAPHIC. Pointer to host structure is also
supported.

There are two ways to reference the host variables grouped in a host structure
in an SQL statement:
v The host structure name can be referenced in an SQL statement.

EXEC SQL SELECT id, name, years, salary
INTO :staff_record
FROM staff
WHERE id = 10;

The precompiler converts the reference to staff_record into a list,
separated by commas, of all the fields declared within the host structure.
Each field is qualified with the host structure names of all levels to prevent
naming conflicts with other host variables or fields. This is equivalent to the
following method.

v Fully qualified host variable names can be referenced in an SQL statement.
EXEC SQL SELECT id, name, years, salary

INTO :staff_record.id, :staff_record.name,
:staff_record.info.years, :staff_record.info.salary

FROM staff
WHERE id = 10;

References to field names must be fully qualified, even if there are no other
host variables with the same name. Qualified sub-structures can also be
referenced. In the example above, :staff_record.info can be used to
replace :staff_record.info.years, :staff_record.info.salary.

Because a reference to a host structure (first example) is equivalent to a
comma-separated list of its fields, there are instances where this type of
reference may lead to an error. For example:

EXEC SQL DELETE FROM :staff_record;

Here, the DELETE statement expects a single character-based host variable. By
giving a host structure instead, the statement results in a precompile-time
error:

SQL0087N Host variable "staff_record" is a structure used where structure
references are not permitted.

Other uses of host structures, which may cause an SQL0087N error to occur,
include PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables and

186 Programming Client Applications

SQLDA references. Host structures with exactly one field are permitted in
such situations, as are references to individual fields (second example).

Related concepts:

v “Indicator Tables in C and C++” on page 187

Indicator Tables in C and C++

An indicator table is a collection of indicator variables to be used with a host
structure. It must be declared as an array of short integers. For example:

short ind_tab[10];

The example above declares an indicator table with 10 elements. The
following shows the way it can be used in an SQL statement:

EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :ind_tab
FROM staff
WHERE id = 10;

The following lists each host structure field with its corresponding indicator
variable in the table:

staff_record.id ind_tab[0]

staff_record.name ind_tab[1]

staff_record.info.years ind_tab[2]

staff_record.info.salary ind_tab[3]

Note: An indicator table element, for example ind_tab[1], cannot be
referenced individually in an SQL statement. The keyword INDICATOR
is optional. The number of structure fields and indicators do not have
to match; any extra indicators are unused, as are extra fields that do not
have indicators assigned to them.

A scalar indicator variable can also be used in the place of an indicator table
to provide an indicator for the first field of the host structure. This is
equivalent to having an indicator table with only one element. For example:

short scalar_ind;

EXEC SQL SELECT id, name, years, salary
INTO :staff_record INDICATOR :scalar_ind
FROM staff
WHERE id = 10;

If an indicator table is specified along with a host variable instead of a host
structure, only the first element of the indicator table, for example ind_tab[0],
will be used:

Chapter 6. Programming in C and C++ 187

EXEC SQL SELECT id
INTO :staff_record.id INDICATOR :ind_tab
FROM staff
WHERE id = 10;

If an array of short integers is declared within a host structure:
struct tag
{

short i[2];
} test_record;

The array will be expanded into its elements when test_record is referenced
in an SQL statement making :test_record equivalent to :test_record.i[0],
:test_record.i[1].

Related concepts:

v “Host Structure Support in C and C++” on page 185

Null-Terminated Strings in C and C++

C/C++ null-terminated strings have their own SQLTYPE (460/461 for
character and 468/469 for graphic).

C/C++ null-terminated strings are handled differently, depending on the
value of the LANGLEVEL precompiler option. If a host variable of one of
these SQLTYPEs and declared length n is specified within an SQL statement,
and the number of bytes (for character types) or double-byte characters (for
graphic types) of data is k, then:
v If the LANGLEVEL option on the PREP command is SAA1 (the default):

For Output:

If... Then...

k > n n characters are moved to the target host
variable, SQLWARN1 is set to 'W', and
SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to k.

k = n k characters are moved to the target host
variable, SQLWARN1 is set to 'N', and
SQLCODE 0 (SQLSTATE 01004). No
null-terminator is placed in the string. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to 0.

188 Programming Client Applications

k < n k characters are moved to the target host
variable and a null character is placed in
character k + 1. If an indicator variable was
specified with the host variable, the value of
the indicator variable is set to 0.

For Input: When the database manager encounters an input host
variable of one of these SQLTYPEs that does not end with a
null-terminator, it will assume that character n+1 will
contain the null-terminator character.

v If the LANGLEVEL option on the PREP command is MIA:

For Output:

If... Then...

k >= n n - 1 characters are moved to the target host
variable, SQLWARN1 is set to 'W', and
SQLCODE 0 (SQLSTATE 01501). The nth
character is set to the null-terminator. If an
indicator variable was specified with the
host variable, the value of the indicator
variable is set to k.

k + 1 = n k characters are moved to the target host
variable, and the null-terminator is placed
in character n. If an indicator variable was
specified with the host variable, the value of
the indicator variable is set to 0.

k + 1 < n k characters are moved to the target host
variable, n - k -1 blanks are appended on
the right starting at character k + 1, then the
null-terminator is placed in character n. If
an indicator variable was specified with the
host variable, the value of the indicator
variable is set to 0.

For Input: When the database manager encounters an input host
variable of one of these SQLTYPEs that does not end with a
null character, SQLCODE -302 (SQLSTATE 22501) is
returned.

When specified in any other SQL context, a host variable of SQLTYPE 460
with length n is treated as a VARCHAR data type with length n, as defined
above. When specified in any other SQL context, a host variable of SQLTYPE
468 with length n is treated as a VARGRAPHIC data type with length n, as
defined above.

Chapter 6. Programming in C and C++ 189

Host Variables Used as Pointer Data Types in C and C++

Host variables may be declared as pointers to specific data types with the
following restrictions:
v If a host variable is declared as a pointer, no other host variable may be

declared with that same name within the same source file. The following
example is not allowed:

char mystring[20];
char (*mystring)[20];

v Use parentheses when declaring a pointer to a null-terminated character
array. In all other cases, parentheses are not allowed. For example:

EXEC SQL BEGIN DECLARE SECTION;
char (*arr)[10]; /* correct */
char *(arr); /* incorrect */
char *arr[10]; /* incorrect */

EXEC SQL END DECLARE SECTION;

The first declaration is a pointer to a 10-byte character array. This is a valid
host variable. The second is an invalid declaration. The parentheses are not
allowed in a pointer to a character. The third declaration is an array of
pointers. This is not a supported data type.

The host variable declaration:
char *ptr

is accepted, but it does not mean null-terminated character string of
undetermined length. Instead, it means a pointer to a fixed-length,
single-character host variable. This may not be what is intended. To define a
pointer host variable that can indicate different character strings, use the
first declaration form above.

v When pointer host variables are used in SQL statements, they should be
prefixed by the same number of asterisks as they were declared with, as in
the following example:

EXEC SQL BEGIN DECLARE SECTION;
char (*mychar)[20]; /* Pointer to character array of 20 bytes */

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT column INTO :*mychar FROM table; /* Correct */

v Only the asterisk may be used as an operator over a host variable name.
v The maximum length of a host variable name is not affected by the number

of asterisks specified, because asterisks are not considered part of the name.
v Whenever using a pointer variable in an SQL statement, you should leave

the optimization level precompile option (OPTLEVEL) at the default setting
of 0 (no optimization). This means that no SQLDA optimization will be
done by the database manager.

190 Programming Client Applications

Class Data Members Used as Host Variables in C and C++

You can declare class data members as host variables (but not classes or
objects themselves). The following example illustrates the method to use:

class STAFF
{

private:
EXEC SQL BEGIN DECLARE SECTION;

char staff_name[20];
short int staff_id;
double staff_salary;

EXEC SQL END DECLARE SECTION;
short staff_in_db;

.

.
};

Data members are only directly accessible in SQL statements through the
implicit this pointer provided by the C++ compiler in class member functions.
You cannot explicitly qualify an object instance (such as SELECT name INTO
:my_obj.staff_name ...) in an SQL statement.

If you directly refer to class data members in SQL statements, the database
manager resolves the reference using the this pointer. For this reason, you
should leave the optimization level precompile option (OPTLEVEL) at the
default setting of 0 (no optimization). This means that no SQLDA
optimization will be done by the database manager. (This is true whenever
pointer host variables are involved in SQL statements.)

The following example shows how you might directly use class data members
which you have declared as host variables in an SQL statement.

class STAFF
{

...
public:

...
short int hire(void)
{

EXEC SQL INSERT INTO staff (name,id,salary)
VALUES (:staff_name, :staff_id, :staff_salary);

staff_in_db = (sqlca.sqlcode == 0);
return sqlca.sqlcode;

}
};

In this example, class data members staff_name, staff_id, and staff_salary
are used directly in the INSERT statement. Because they have been declared

Chapter 6. Programming in C and C++ 191

as host variables (see the first example in this section), they are implicitly
qualified to the current object with the this pointer. In SQL statements, you
can also refer to data members that are not accessible through the this pointer.
You do this by referring to them indirectly using pointer or reference host
variables.

The following example shows a new method, asWellPaidAs that takes a second
object, otherGuy. This method references its members indirectly through a local
pointer or reference host variable, as you cannot reference its members
directly within the SQL statement.

short int STAFF::asWellPaidAs(STAFF otherGuy)
{

EXEC SQL BEGIN DECLARE SECTION;
short &otherID = otherGuy.staff_id
double otherSalary;

EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT SALARY INTO :otherSalary

FROM STAFF WHERE id = :otherID;
if(sqlca.sqlcode == 0)

return staff_salary >= otherSalary;
else

return 0;
}

Qualification and Member Operators in C and C++

You cannot use the C++ scope resolution operator '::', nor the C/C++ member
operators '.' or '->' in embedded SQL statements. You can easily accomplish
the same thing through use of local pointer or reference variables, which are
set outside the SQL statement, to point to the desired scoped variable, then
used inside the SQL statement to refer to it. The following example shows the
correct method to use:

EXEC SQL BEGIN DECLARE SECTION;
char (& localName)[20] = ::name;

EXEC SQL END DECLARE SECTION;
EXEC SQL

SELECT name INTO :localName FROM STAFF
WHERE name = ’Sanders’;

Multi-Byte Character Encoding in C and C++

Some character encoding schemes, particularly those from east Asian
countries, require multiple bytes to represent a character. This external
representation of data is called the multi-byte character code representation of a
character, and includes double-byte characters (characters represented by two
bytes). Graphic data in DB2® consists of double-byte characters.

To manipulate character strings with double-byte characters, it may be
convenient for an application to use an internal representation of data. This

192 Programming Client Applications

internal representation is called the wide-character code representation of the
double-byte characters, and is the format customarily used in the wchar_t
C/C++ data type. Subroutines that conform to ANSI C and X/OPEN
Portability Guide 4 (XPG4) are available to process wide-character data, and
to convert data in wide-character format to and from multibyte format.

Note that although an application can process character data in either
multibyte format or wide-character format, interaction with the database
manager is done with DBCS (multibyte) character codes only. That is, data is
stored in and retrieved from GRAPHIC columns in DBCS format. The
WCHARTYPE precompiler option is provided to allow application data in
wide-character format to be converted to/from multibyte format when it is
exchanged with the database engine.

Related concepts:

v “Graphic Host Variables in C and C++” on page 176
v “wchar_t and sqldbchar Data Types in C and C++” on page 193

wchar_t and sqldbchar Data Types in C and C++

While the size and encoding of DB2® graphic data is constant from one
platform to another for a particular code page, the size and internal format of
the ANSI C or C++ wchar_t data type depends on which compiler you use
and which platform you are on. The sqldbchar data type, however, is defined
by DB2 to be two bytes in size, and is intended to be a portable way of
manipulating DBCS and UCS-2 data in the same format in which it is stored
in the database.

You can define all DB2 C graphic host variable types using either wchar_t or
sqldbchar. You must use wchar_t if you build your application using the
WCHARTYPE CONVERT precompile option.

Note: When specifying the WCHARTYPE CONVERT option on a Windows®

platform, you should note that wchar_t on Windows platforms is
Unicode. Therefore, if your C/C++ compiler’s wchar_t is not Unicode,
the wcstombs() function call may fail with SQLCODE -1421
(SQLSTATE=22504). If this happens, you can specify the WCHARTYPE
NOCONVERT option, and explicitly call the wcstombs() and
mbstowcs() functions from within your program.

If you build your application with the WCHARTYPE NOCONVERT
precompile option, you should use sqldbchar for maximum portability
between different DB2 client and server platforms. You may use wchar_t with
WCHARTYPE NOCONVERT, but only on platforms where wchar_t is defined
as two bytes in length.

Chapter 6. Programming in C and C++ 193

If you incorrectly use either wchar_t or sqldbchar in host variable
declarations, you will receive an SQLCODE 15 (no SQLSTATE) at precompile
time.

Related concepts:

v “WCHARTYPE Precompiler Option in C and C++” on page 194
v “Japanese and Traditional Chinese EUC and UCS-2 Code Set

Considerations” on page 404

WCHARTYPE Precompiler Option in C and C++

Using the WCHARTYPE precompiler option, you can specify which graphic
character format you want to use in your C/C++ application. This option
provides you with the flexibility to choose between having your graphic data
in multibyte format or in wide-character format. There are two possible values
for the WCHARTYPE option:

CONVERT
If you select the WCHARTYPE CONVERT option, character codes are
converted between the graphic host variable and the database
manager. For graphic input host variables, the character code
conversion from wide-character format to multibyte DBCS character
format is performed before the data is sent to the database manager,
using the ANSI C function wcstombs(). For graphic output host
variables, the character code conversion from multibyte DBCS
character format to wide-character format is performed before the
data received from the database manager is stored in the host
variable, using the ANSI C function mbstowcs().

The advantage to using WCHARTYPE CONVERT is that it allows
your application to fully exploit the ANSI C mechanisms for dealing
with wide-character strings (L-literals, ’wc’ string functions, and so
on) without having to explicitly convert the data to multibyte format
before communicating with the database manager. The disadvantage
is that the implicit conversions may have an impact on the
performance of your application at run time, and may increase
memory requirements.

If you select WCHARTYPE CONVERT, declare all graphic host
variables using wchar_t instead of sqldbchar.

If you want WCHARTYPE CONVERT behavior, but your application
does not need to be precompiled (for example, a CLI application),
then define the C preprocessor macro SQL_WCHART_CONVERT at compile
time. This ensures that certain definitions in the DB2 header files use
the data type wchar_t instead of sqldbchar.

194 Programming Client Applications

Note: The WCHARTYPE CONVERT precompile option is not
currently supported in programs running on the DB2®

Windows® 3.1 client. For those programs, use the default
(WCHARTYPE NOCONVERT).

NOCONVERT (default)
If you choose the WCHARTYPE NOCONVERT option, or do not
specify any WCHARTYPE option, no implicit character code
conversion occurs between the application and the database manager.
Data in a graphic host variable is sent to and received from the
database manager as unaltered DBCS characters. This has the
advantage of improved performance, but the disadvantage that your
application must either refrain from using wide-character data in
wchar_t host variables, or must explicitly call the wcstombs() and
mbstowcs() functions to convert the data to and from multibyte format
when interfacing with the database manager.

If you select WCHARTYPE NOCONVERT, declare all graphic host
variables using the sqldbchar type for maximum portability to other
DB2 client/server platforms.

Other guidelines you need to observe are:
v Because wchar_t or sqldbchar support is used to handle DBCS data, its use

requires DBCS or EUC capable hardware and software. This support is only
available in the DBCS environment of DB2 Universal Database, or for
dealing with GRAPHIC data in any application (including single-byte
applications) connected to a UCS-2 database.

v Non-DBCS characters, and wide-characters that can be converted to
non-DBCS characters, should not be used in graphic strings. Non-DBCS
characters refers to single-byte characters, and non-double byte characters.
Graphic strings are not validated to ensure that their values contain only
double-byte character code points. Graphic host variables must contain only
DBCS data, or, if WCHARTYPE CONVERT is in effect, wide-character data
that converts to DBCS data. You should store mixed double-byte and
single-byte data in character host variables. Note that mixed data host
variables are unaffected by the setting of the WCHARTYPE option.

v In applications where the WCHARTYPE NOCONVERT precompile option
is used, L-literals should not be used in conjunction with graphic host
variables, because L-literals are in wide-character format. An L-literal is a C
wide-character string literal prefixed by the letter L which has the data type
"array of wchar_t". For example, L"dbcs-string" is an L-literal.

v In applications where the WCHARTYPE CONVERT precompile option is
used, L-literals can be used to initialize wchar_t host variables, but cannot
be used in SQL statements. Instead of using L-literals, SQL statements
should use graphic string constants, which are independent of the
WCHARTYPE setting.

Chapter 6. Programming in C and C++ 195

v The setting of the WCHARTYPE option affects graphic data passed to and
from the database manager using the SQLDA structure as well as host
variables. If WCHARTYPE CONVERT is in effect, graphic data received
from the application through an SQLDA will be presumed to be in
wide-character format, and will be converted to DBCS format via an
implicit call to wcstombs(). Similarly, graphic output data received by an
application will have been converted to wide-character format before being
placed in application storage.

v Not-fenced stored procedures must be precompiled with the WCHARTYPE
NOCONVERT option. Ordinary fenced stored procedures may be
precompiled with either the CONVERT or NOCONVERT options, which
will affect the format of graphic data manipulated by SQL statements
contained in the stored procedure. In either case, however, any graphic data
passed into the stored procedure through the SQLDA will be in DBCS
format. Likewise, data passed out of the stored procedure through the
SQLDA must be in DBCS format.

v If an application calls a stored procedure through the Database Application
Remote Interface (DARI) interface (the sqleproc() API), any graphic data in
the input SQLDA must be in DBCS format, or in UCS-2 if connected to a
UCS-2 database, regardless of the state of the calling application’s
WCHARTYPE setting. Likewise, any graphic data in the output SQLDA
will be returned in DBCS format, or in UCS-2 if connected to a UCS-2
database, regardless of the WCHARTYPE setting.

v If an application calls a stored procedure through the SQL CALL statement,
graphic data conversion will occur on the SQLDA, depending on the calling
application’s WCHARTYPE setting.

v Graphic data passed to user-defined functions (UDFs) will always be in
DBCS format. Likewise, any graphic data returned from a UDF will be
assumed to be in DBCS format for DBCS databases, and UCS-2 format for
EUC and UCS-2 databases.

v Data stored in DBCLOB files through the use of DBCLOB file reference
variables is stored in either DBCS format, or, in the case of UCS-2
databases, in UCS-2 format. Likewise, input data from DBCLOB files is
retrieved either in DBCS format, or, in the case of UCS-2 databases, in
UCS-2 format.

Note: If you precompile C applications using the WCHARTYPE CONVERT
option, DB2 validates the applications’ graphic data on both input and
output as the data is passed through the conversion functions. If you
do not use the CONVERT option, no conversion of graphic data, and
hence no validation occurs. In a mixed CONVERT/NOCONVERT
environment, this may cause problems if invalid graphic data is
inserted by a NOCONVERT application and then fetched by a

196 Programming Client Applications

CONVERT application. This data fails the conversion with an
SQLCODE -1421 (SQLSTATE 22504) on a FETCH in the CONVERT
application.

Related reference:

v “PREPARE statement” in the SQL Reference, Volume 2

Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and
C++

If your application code page is Japanese or Traditional Chinese EUC, or if
your application connects to a UCS-2 database, you can access GRAPHIC
columns at a database server by using either the CONVERT or the
NOCONVERT option and wchar_t or sqldbchar graphic host variables, or
input/output SQLDAs. In this section, DBCS format refers to the UCS-2
encoding scheme for EUC data. Consider the following cases:
v CONVERT option used

The DB2® client converts graphic data from the wide character format to
your application code page, then to UCS-2 before sending the input SQLDA
to the database server. Any graphic data is sent to the database server
tagged with the UCS-2 code page identifier. Mixed character data is tagged
with the application code page identifier. When graphic data is retrieved
from a database by a client, it is tagged with the UCS-2 code page
identifier. The DB2 client converts the data from UCS-2 to the client
application code page, then to the wide character format. If an input
SQLDA is used instead of a host variable, you are required to ensure that
graphic data is encoded using the wide character format. This data will be
converted to UCS-2, then sent to the database server. These conversions will
impact performance.

v NOCONVERT option used
The graphic data is assumed by DB2 to be encoded using UCS-2 and is
tagged with the UCS-2 code page, and no conversions are done. DB2
assumes that the graphic host variable is being used simply as a bucket.
When the NOCONVERT option is chosen, graphic data retrieved from the
database server is passed to the application encoded using UCS-2. Any
conversions from the application code page to UCS-2 and from UCS-2 to
the application code page are your responsibility. Data tagged as UCS-2 is
sent to the database server without any conversions or alterations.

To minimize conversions you can either use the NOCONVERT option and
handle the conversions in your application, or not use GRAPHIC columns.
For the client environments where wchar_t encoding is in two-byte Unicode,
for example Windows® NT or AIX® version 4.3 and higher, you can use the
NOCONVERT option and work directly with UCS-2. In such cases, your
application should handle the difference between big-endian and little-endian

Chapter 6. Programming in C and C++ 197

architectures. With the NOCONVERT option, DB2 Universal Database uses
sqldbchar, which is always two-byte big-endian.

Do not assign IBM-eucJP/IBM-eucTW CS0 (7-bit ASCII) and IBM-eucJP CS2
(Katakana) data to graphic host variables either after conversion to UCS-2 (if
NOCONVERT is specified) or by conversion to the wide character format (if
CONVERT is specified). The reason is that characters in both of these EUC
code sets become single-byte when converted from UCS-2 to PC DBCS.

In general, although eucJP and eucTW store GRAPHIC data as UCS-2, the
GRAPHIC data in these databases is still non-ASCII eucJP or eucTW data.
Specifically, any space padded to such GRAPHIC data is DBCS space (also
known as ideographic space in UCS-2, U+3000). For a UCS-2 database,
however, GRAPHIC data can contain any UCS-2 character, and space padding
is done with UCS-2 space, U+0020. Keep this difference in mind when you
code applications to retrieve UCS-2 data from a UCS-2 database versus UCS-2
data from eucJP and eucTW databases.

Related concepts:

v “Japanese and Traditional Chinese EUC and UCS-2 Code Set
Considerations” on page 404

SQL Declare Section with Host Variables for C and C++

The following is a sample SQL declare section with host variables declared for
supported SQL data types:

EXEC SQL BEGIN DECLARE SECTION;

...
short age = 26; /* SQL type 500 */
short year; /* SQL type 500 */
sqlint32 salary; /* SQL type 496 */
sqlint32 deptno; /* SQL type 496 */
float bonus; /* SQL type 480 */
double wage; /* SQL type 480 */
char mi; /* SQL type 452 */
char name[6]; /* SQL type 460 */
struct {

short len;
char data[24];
} address; /* SQL type 448 */

struct {
short len;
char data[32695];
} voice; /* SQL type 456 */

sql type is clob(1m)
chapter; /* SQL type 408 */

sql type is clob_locator
chapter_locator; /* SQL type 964 */

198 Programming Client Applications

sql type is clob_file
chapter_file_ref; /* SQL type 920 */

sql type is blob(1m)
video; /* SQL type 404 */

sql type is blob_locator
video_locator; /* SQL type 960 */

sql type is blob_file
video_file_ref; /* SQL type 916 */

sql type is dbclob(1m)
tokyo_phone_dir; /* SQL type 412 */

sql type is dbclob_locator
tokyo_phone_dir_lctr; /* SQL type 968 */

sql type is dbclob_file
tokyo_phone_dir_flref; /* SQL type 924 */

struct {
short len;
sqldbchar data[100];
} vargraphic1; /* SQL type 464 */

/* Precompiled with
WCHARTYPE NOCONVERT option */

struct {
short len;
wchar_t data[100];
} vargraphic2; /* SQL type 464 */

/* Precompiled with
WCHARTYPE CONVERT option */

struct {
short len;
sqldbchar data[10000];
} long_vargraphic1; /* SQL type 472 */

/* Precompiled with
WCHARTYPE NOCONVERT option */

struct {
short len;
wchar_t data[10000];
} long_vargraphic2; /* SQL type 472 */

/* Precompiled with
WCHARTYPE CONVERT option */

sqldbchar graphic1[100]; /* SQL type 468 */
/* Precompiled with
WCHARTYPE NOCONVERT option */

wchar_t graphic2[100]; /* SQL type 468 */
/* Precompiled with
WCHARTYPE CONVERT option */

char date[11]; /* SQL type 384 */
char time[9]; /* SQL type 388 */
char timestamp[27]; /* SQL type 392 */
short wage_ind; /* Null indicator */

...
EXEC SQL END DECLARE SECTION;

Chapter 6. Programming in C and C++ 199

Data Type Considerations for C and C++

The sections that follow describe how SQL data types map to C and C++ data
types.

Supported SQL Data Types in C and C++

Certain predefined C and C++ data types correspond to the database manager
column types. Only these C/C++ data types can be declared as host variables.

The following table shows the C/C++ equivalent of each column type. When
the precompiler finds a host variable declaration, it determines the
appropriate SQL type value. The database manager uses this value to convert
the data exchanged between the application and itself.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 13. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type1 C/C++ Data Type SQL Column Type Description

SMALLINT
(500 or 501)

short
short int
sqlint16

16-bit signed integer

INTEGER
(496 or 497)

long
long int
sqlint322

32-bit signed integer

BIGINT
(492 or 493)

long long
long
__int64
sqlint643

64-bit signed integer

REAL4

(480 or 481)
float Single-precision floating point

DOUBLE5

(480 or 481)
double Double-precision floating point

DECIMAL(p,s)
(484 or 485)

No exact equivalent; use double Packed decimal

(Consider using the CHAR and DECIMAL
functions to manipulate packed decimal
fields as character data.)

CHAR(1)
(452 or 453)

char Single character

CHAR(n)
(452 or 453)

No exact equivalent; use
char[n+1] where n is large enough
to hold the data
1<=n<=254

Fixed-length character string

200 Programming Client Applications

Table 13. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

VARCHAR(n)
(448 or 449)

struct tag {
short int;
char[n]
}

1<=n<=32 672

Non null-terminated varying character string
with 2-byte string length indicator

Alternatively, use char[n+1] where
n is large enough to hold the data
1<=n<=32 672

Null-terminated variable-length character
string
Note: Assigned an SQL type of 460/461.

LONG VARCHAR
(456 or 457)

struct tag {
short int;
char[n]
}

32 673<=n<=32 700

Non null-terminated varying character string
with 2-byte string length indicator

CLOB(n)
(408 or 409)

sql type is
clob(n)

1<=n<=2 147 483 647

Non null-terminated varying character string
with 4-byte string length indicator

CLOB locator variable6

(964 or 965)
sql type is

clob_locator
Identifies CLOB entities residing on the
server

CLOB file reference variable6 on page 203

(920 or 921)

sql type is
clob_file

Descriptor for file containing CLOB data

BLOB(n)
(404 or 405)

sql type is
blob(n)

1<=n<=2 147 483 647

Non null-terminated varying binary string
with 4-byte string length indicator

BLOB locator variable6

(960 or 961)
sql type is

blob_locator
Identifies BLOB entities on the server

BLOB file reference variable6

(916 or 917)
sql type is

blob_file
Descriptor for the file containing BLOB data

DATE
(384 or 385)

Null-terminated character form Allow at least 11 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 10 characters.

TIME
(388 or 389)

Null-terminated character form Allow at least 9 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 8 characters.

TIMESTAMP
(392 or 393)

Null-terminated character form Allow at least 27 characters to accommodate
the null-terminator.

VARCHAR structured form Allow at least 26 characters.

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE NOCONVERT option.

GRAPHIC(1)
(468 or 469)

sqldbchar Single double-byte character

Chapter 6. Programming in C and C++ 201

Table 13. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

GRAPHIC(n)
(468 or 469)

No exact equivalent; use
sqldbchar[n+1] where n is large
enough to hold the data
1<=n<=127

Fixed-length double-byte character string

VARGRAPHIC(n)
(464 or 465)

struct tag {
short int;
sqldbchar[n]
}

1<=n<=16 336

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Alternatively use sqldbchar[n+1]
where n is large enough to hold
the data
1<=n<=16 336

Null-terminated variable-length double-byte
character string
Note: Assigned an SQL type of 400/401.

LONG VARGRAPHIC
(472 or 473)

struct tag {
short int;
sqldbchar[n]
}

16 337<=n<=16 350

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE CONVERT option.

GRAPHIC(1)
(468 or 469)

wchar_t v Single wide character (for C-type)
v Single double-byte character (for column

type)

GRAPHIC(n)
(468 or 469)

No exact equivalent; use wchar_t
[n+1] where n is large enough to
hold the data
1<=n<=127

Fixed-length double-byte character string

VARGRAPHIC(n)
(464 or 465)

struct tag {
short int;
wchar_t [n]
}

1<=n<=16 336

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Alternately use char[n+1] where n
is large enough to hold the data
1<=n<=16 336

Null-terminated variable-length double-byte
character string
Note: Assigned an SQL type of 400/401.

LONG VARGRAPHIC
(472 or 473)

struct tag {
short int;
wchar_t [n]
}

16 337<=n<=16 350

Non null-terminated varying double-byte
character string with 2-byte string length
indicator

Note: The following data types are only available in the DBCS or EUC environment.

202 Programming Client Applications

Table 13. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type1 C/C++ Data Type SQL Column Type Description

DBCLOB(n)
(412 or 413)

sql type is
dbclob(n)

1<=n<=1 073 741 823

Non null-terminated varying double-byte
character string with 4-byte string length
indicator

DBCLOB locator variable6

(968 or 969)
sql type is

dbclob_locator
Identifies DBCLOB entities residing on the
server

DBCLOB file reference
variable6

(924 or 925)

sql type is
dbclob_file

Descriptor for file containing DBCLOB data

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. For platform compatibility, use sqlint32. On 64-bit UNIX platforms, ″long″ is a 64 bit integer. On 64-bit Windows
operating systems and 32-bit UNIX platforms ″long″ is a 32 bit integer.

3. For platform compatibility, use sqlint64. The DB2 Universal Database sqlsystm.h header file will type define
sqlint64 as ″__int64″ on the Windows NT platform when using the Microsoft compiler, ″long long″ on 32-bit UNIX
platforms, and ″long″ on 64 bit UNIX platforms.

4. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

5. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

6. This is not a column type but a host variable type.

The following are additional rules for supported C/C++ data types:
v The data type char can be declared as char or unsigned char.
v The database manager processes null-terminated variable-length character

string data type char[n] (data type 460), as VARCHAR(m).
– If LANGLEVEL is SAA1, the host variable length m equals the character

string length n in char[n] or the number of bytes preceding the first
null-terminator (\0), whichever is smaller.

– If LANGLEVEL is MIA, the host variable length m equals the number of
bytes preceding the first null-terminator (\0).

v The database manager processes null-terminated, variable-length graphic
string data type, wchar_t[n] or sqldbchar[n] (data type 400), as
VARGRAPHIC(m).

Chapter 6. Programming in C and C++ 203

– If LANGLEVEL is SAA1, the host variable length m equals the character
string length n in wchar_t[n] or sqldbchar[n], or the number of
characters preceding the first graphic null-terminator, whichever is
smaller.

– If LANGLEVEL is MIA, the host variable length m equals the number of
characters preceding the first graphic null-terminator.

v Unsigned numeric data types are not supported.
v The C/C++ data type int is not allowed because its internal representation

is machine dependent.

Related concepts:

v “SQL Declare Section with Host Variables for C and C++” on page 198

FOR BIT DATA in C and C++

The standard C or C++ string type 460 should not be used for columns
designated FOR BIT DATA. The database manager truncates this data type
when a null character is encountered. Use either the VARCHAR (SQL type
448) or CLOB (SQL type 408) structures.

Related concepts:

v “SQL Declare Section with Host Variables for C and C++” on page 198

Related reference:

v “Supported SQL Data Types in C and C++” on page 200

C and C++ Data Types for Procedures, Functions, and Methods

The following table lists the supported mappings between SQL data types and
C data types for procedures, UDFs, and methods.

Table 14. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type C/C++ Data Type SQL Column Type Description

SMALLINT
(500 or 501)

short 16-bit signed integer

INTEGER
(496 or 497)

sqlint32 32-bit signed integer

BIGINT
(492 or 493)

sqlint64 64-bit signed integer

REAL
(480 or 481)

float Single-precision floating point

DOUBLE
(480 or 481)

double Double-precision floating point

204 Programming Client Applications

Table 14. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type C/C++ Data Type SQL Column Type Description

DECIMAL(p,s)
(484 or 485)

Not supported. To pass a decimal value, define the parameter
to be of a data type castable from DECIMAL
(for example CHAR or DOUBLE) and
explicitly cast the argument to this type.

CHAR(n)
(452 or 453)

char[n+1] where n is large enough
to hold the data
1<=n<=254

Fixed-length, null-terminated character string

CHAR(n) FOR BIT DATA
(452 or 453)

char[n+1] where n is large enough
to hold the data
1<=n<=254

Fixed-length character string

VARCHAR(n)
(448 or 449) (460 or 461)

char[n+1] where n is large enough
to hold the data
1<=n<=32 672

Null-terminated varying length string

VARCHAR(n) FOR BIT DATA
(448 or 449)

struct {
sqluint16 length;
char[n]

}

1<=n<=32 672

Not null-terminated varying length character
string

LONG VARCHAR
(456 or 457)

struct {
sqluint16 length;
char[n]

}

32 673<=n<=32 700

Not null-terminated varying length character
string

CLOB(n)
(408 or 409)

struct {
sqluint32 length;
char data[n];

}

1<=n<=2 147 483 647

Not null-terminated varying length character
string with 4-byte string length indicator

BLOB(n)
(404 or 405)

struct {
sqluint32 length;
char data[n];

}

1<=n<=2 147 483 647

Not null-terminated varying binary string
with 4-byte string length indicator

DATE
(384 or 385)

char[11] Null-terminated character form

TIME
(388 or 389)

char[9] Null-terminated character form

TIMESTAMP
(392 or 393)

char[27] Null-terminated character form

Note: The following data types are only available in the DBCS or EUC environment when precompiled with the
WCHARTYPE NOCONVERT option.

Chapter 6. Programming in C and C++ 205

Table 14. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type C/C++ Data Type SQL Column Type Description

GRAPHIC(n)
(468 or 469)

sqldbchar[n+1] where n is large
enough to hold the data
1<=n<=127

Fixed-length, null-terminated double-byte
character string

VARGRAPHIC(n)
(400 or 401)

sqldbchar[n+1] where n is large
enough to hold the data
1<=n<=16 336

Not null-terminated, variable-length
double-byte character string

LONG VARGRAPHIC
(472 or 473)

struct {
sqluint16 length;
sqldbchar[n]

}

16 337<=n<=16 350

Not null-terminated, variable-length
double-byte character string

DBCLOB(n)
(412 or 413)

struct {
sqluint32 length;
sqldbchar data[n];

}

1<=n<=1 073 741 823

Not null-terminated varying length character
string with 4-byte string length indicator

SQLSTATE and SQLCODE Variables in C and C++

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
char SQLSTATE[6]
sqlint32 SQLCODE;

...
EXEC SQL END DECLARE SECTION;

If neither of these is specified, the SQLCODE declaration is assumed during
the precompile step. Note that when using this option, the INCLUDE SQLCA
statement should not be specified.

In an application that is made up of multiple source files, the SQLCODE and
SQLSTATE variables may be defined in the first source file as above.
Subsequent source files should modify the definitions as follows:

extern sqlint32 SQLCODE;
extern char SQLSTATE[6];

206 Programming Client Applications

Chapter 7. Multiple-Thread Database Access for C and C++
Applications

Purpose of Multiple-Thread Database Access 207
Recommendations for Using Multiple
Threads 209
Code Page and Country/Region Code
Considerations for Multithreaded UNIX
Applications 209

Troubleshooting Multithreaded Applications 210
Potential Problems with Multiple Threads 210
Deadlock Prevention for Multiple
Contexts 210

Purpose of Multiple-Thread Database Access

One feature of some operating systems is the ability to run several threads of
execution within a single process. The multiple threads allow an application
to handle asynchronous events, and makes it easier to create event-driven
applications, without resorting to polling schemes. The information that
follows describes how the database manager works with multiple threads,
and lists some design guidelines that you should keep in mind.

If you are not familiar with terms relating to the development of
multithreaded applications (such as critical section and semaphore), consult
the programming documentation for your operating system.

A DB2 application can execute SQL statements from multiple threads using
contexts. A context is the environment from which an application runs all SQL
statements and API calls. All connections, units of work, and other database
resources are associated with a specific context. Each context is associated
with one or more threads within an application.

For each executable SQL statement in a context, the first run-time services call
always tries to obtain a latch. If it is successful, it continues processing. If not
(because an SQL statement in another thread of the same context already has
the latch), the call is blocked on a signaling semaphore until that semaphore is
posted, at which point the call gets the latch and continues processing. The
latch is held until the SQL statement has completed processing, at which time
it is released by the last run-time services call that was generated for that
particular SQL statement.

The net result is that each SQL statement within a context is executed as an
atomic unit, even though other threads may also be trying to execute SQL
statements at the same time. This action ensures that internal data structures
are not altered by different threads at the same time. APIs also use the latch

© Copyright IBM Corp. 1993-2002 207

used by run-time services; therefore, APIs have the same restrictions as
run-time services routines within each context.

By default, all applications have a single context that is used for all database
access. While this is perfect for a single threaded application, the serialization
of SQL statements makes a single context inadequate for a multithreaded
application. By using the following DB2 APIs, your application can attach a
separate context to each thread and allow contexts to be passed between
threads:
v sqleSetTypeCtx()
v sqleBeginCtx()
v sqleEndCtx()
v sqleAttachToCtx()
v sqleDetachFromCtx()
v sqleGetCurrentCtx()
v sqleInterruptCtx()

Contexts may be exchanged between threads in a process, but not exchanged
between processes. One use of multiple contexts is to provide support for
concurrent transactions.

Related concepts:

v “Concurrent Transactions” on page 426

Related reference:

v “sqleAttachToCtx - Attach to Context” in the Administrative API Reference

v “sqleBeginCtx - Create and Attach to an Application Context” in the
Administrative API Reference

v “sqleDetachFromCtx - Detach From Context” in the Administrative API
Reference

v “sqleEndCtx - Detach and Destroy Application Context” in the
Administrative API Reference

v “sqleGetCurrentCtx - Get Current Context” in the Administrative API
Reference

v “sqleInterruptCtx - Interrupt Context” in the Administrative API Reference

v “sqleSetTypeCtx - Set Application Context Type” in the Administrative API
Reference

Related samples:

v “dbthrds.sqc -- How to use multiple context APIs on UNIX (C)”
v “dbthrds.sqC -- How to use multiple context APIs on UNIX (C++)”

208 Programming Client Applications

Recommendations for Using Multiple Threads

Follow these guidelines when accessing a database from multiple thread
applications:
v Serialize alteration of data structures.

Applications must ensure that user-defined data structures used by SQL
statements and database manager routines are not altered by one thread
while an SQL statement or database manager routine is being processed in
another thread. For example, do not allow a thread to reallocate an SQLDA
while it was being used by an SQL statement in another thread.

v Consider using separate data structures.
It may be easier to give each thread its own user-defined data structures to
avoid having to serialize their usage. This guideline is especially true for
the SQLCA, which is used not only by every executable SQL statement, but
also by all of the database manager routines. There are three alternatives for
avoiding this problem with the SQLCA:
– Use EXEC SQL INCLUDE SQLCA, but add struct sqlca sqlca at the

beginning of any routine that is used by any thread other than the first
thread.

– Place EXEC SQL INCLUDE SQLCA inside each routine that contains
SQL, instead of in the global scope.

– Replace EXEC SQL INCLUDE SQLCA with #include "sqlca.h", then
add "struct sqlca sqlca" at the beginning of any routine that uses
SQL.

Code Page and Country/Region Code Considerations for Multithreaded UNIX
Applications

On AIX, the Solaris Operating Environment, HP-UX, and Silicon Graphics
IRIX, changes have been made to the functions that are used for run-time
querying of the code page and country/region code to be used for a database
connection. These functions are now thread safe, but can create some lock
contention (and resulting performance degradation) in a multithreaded
application that uses a large number of concurrent database connections.

You can use the DB2_FORCE_NLS_CACHE environment variable to eliminate
the chance of lock contention in multithreaded applications. When
DB2_FORCE_NLS_CACHE is set to TRUE, the code page and country/region
code information is saved the first time a thread accesses it. From that point
on, the cached information will be used for any other thread that requests this
information. By saving this information, lock contention is eliminated, and in
certain situations a performance benefit will be realized.

Chapter 7. Multiple-Thread Database Access for C and C++ Applications 209

You should not set DB2_FORCE_NLS_CACHE to TRUE if the application
changes locale settings between connections. If this situation occurs, the
original locale information will be returned even after the locale settings have
been changed. In general, multithreaded applications will not change locale
settings, which, ensures that the application remains thread safe.

Related concepts:

v “DB2 registry and environment variables” in the Administration Guide:
Performance

Troubleshooting Multithreaded Applications

The sections that follow describe problems that can occur with multithreaded
application, and how to avoid them.

Potential Problems with Multiple Threads

An application that uses multiple threads is, understandably, more complex
than a single-threaded application. This extra complexity can potentially lead
to some unexpected problems. When writing a multithreaded application,
exercise caution with the following:
v Database dependencies between two or more contexts.

Each context in an application has its own set of database resources,
including locks on database objects. This characteristic makes it possible for
two contexts, if they are accessing the same database object, to deadlock.
The database manager will detect the deadlock. One of the contexts will
receive SQLCODE -911 and its unit of work will be rolled back.

v Application dependencies between two or more contexts.
Be careful with any programming techniques that establish inter-context
dependencies. Latches, semaphores, and critical sections are examples of
programming techniques that can establish such dependencies. If an
application has two contexts that have both application and database
dependencies between the contexts, it is possible for the application to
become deadlocked. If some of the dependencies are outside of the
database manager, the deadlock is not detected, thus the application gets
suspended or hung.

Related concepts:

v “Deadlock Prevention for Multiple Contexts” on page 210

Deadlock Prevention for Multiple Contexts

Because the database manager cannot detect deadlocks between threads,
design and code your application in a way that will prevent (or at least avoid)
deadlocks.

210 Programming Client Applications

As an example of a deadlock that the database manager would not detect,
consider an application that has two contexts, both of which access a common
data structure. To avoid problems where both contexts change the data
structure simultaneously, the data structure is protected by a semaphore. The
contexts look like this:

context 1
SELECT * FROM TAB1 FOR UPDATE....
UPDATE TAB1 SET....
get semaphore
access data structure
release semaphore
COMMIT

context 2
get semaphore
access data structure
SELECT * FROM TAB1...
release semaphore
COMMIT

Suppose the first context successfully executes the SELECT and the UPDATE
statements, while the second context gets the semaphore and accesses the data
structure. The first context now tries to get the semaphore, but it cannot
because the second context is holding the semaphore. The second context now
attempts to read a row from table TAB1, but it stops on a database lock held
by the first context. The application is now in a state where context 1 cannot
finish before context 2 is done and context 2 is waiting for context 1 to finish.
The application is deadlocked, but because the database manager does not
know about the semaphore dependency neither context will be rolled back.
The unresolved dependency leaves the application suspended.

You can avoid the deadlock that would occur for the previous example in
several ways.
v Release all locks held before obtaining the semaphore.

Change the code for context 1 to perform a commit before it gets the
semaphore.

v Do not code SQL statements inside a section protected by semaphores.
Change the code for context 2 to release the semaphore before doing the
SELECT.

v Code all SQL statements within semaphores.
Change the code for context 1 to obtain the semaphore before running the
SELECT statement. While this technique will work, it is not highly
recommended because the semaphores will serialize access to the database
manager, which potentially negates the benefits of using multiple threads.

v Set the locktimeout database configuration parameter to a value other than
-1.

Chapter 7. Multiple-Thread Database Access for C and C++ Applications 211

While a value other than -1 will not prevent the deadlock, it will allow
execution to resume. Context 2 is eventually rolled back because it is unable
to obtain the requested lock. When handling the roll back error, context 2
should release the semaphore. Once the semaphore has been released,
context 1 can continue and context 2 is free to retry its work.

The techniques for avoiding deadlocks are described in terms of the example,
but you can apply them to all multithreaded applications. In general, treat the
database manager as you would treat any protected resource and you should
not run into problems with multithreaded applications.

Related concepts:

v “Potential Problems with Multiple Threads” on page 210

212 Programming Client Applications

Chapter 8. Programming in COBOL

Programming Considerations for COBOL 213
Language Restrictions in COBOL 213
Multiple-Thread Database Access in COBOL 213
Input and Output Files for COBOL 214
Include Files for COBOL 214
Embedded SQL Statements in COBOL . . . 217
Host Variables in COBOL 219

Host Variables in COBOL 219
Host Variable Names in COBOL 220
Host Variable Declarations in COBOL . . 220
Syntax for Numeric Host Variables in
COBOL 221
Syntax for Fixed-Length Character Host
Variables in COBOL 222
Syntax for Fixed-Length Graphic Host
Variables in COBOL 224
Indicator Variables in COBOL. 225
Syntax for LOB Host Variables in COBOL 225

Syntax for LOB Locator Host Variables in
COBOL 226
Syntax for File Reference Host Variables
in COBOL 226
Host Structure Support in COBOL . . . 227
Indicator Tables in COBOL. 229
REDEFINES in COBOL Group Data Items 230
SQL Declare Section with Host Variables
for COBOL 231

Data Type Considerations for COBOL . . . 231
Supported SQL Data Types in COBOL 231
BINARY/COMP-4 COBOL Data Types 234
FOR BIT DATA in COBOL 235

SQLSTATE and SQLCODE Variables in
COBOL 235
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for COBOL 235
Object Oriented COBOL 236

Programming Considerations for COBOL

Special host-language programming considerations are discussed in the
following sections. Included is information on language restrictions, host
language specific include files, embedding SQL statements, host variables, and
supported data types for host variables. See the Micro Focus COBOL
documentation for information about embedding SQL statements, language
restrictions, and supported data types for host variables.

Related reference:

v “COBOL Samples” in the Application Development Guide: Building and
Running Applications

Language Restrictions in COBOL

All API pointers are 4 bytes long. All integer variables used as value
parameters in API calls must be declared with a USAGE COMP-5 clause.

Multiple-Thread Database Access in COBOL

COBOL does not support multiple-thread database access.

© Copyright IBM Corp. 1993-2002 213

Input and Output Files for COBOL

By default, the input file has an extension of .sqb, but if you use the TARGET
precompile option (TARGET ANSI_COBOL, TARGET IBMCOB, TARGET
MFCOB or TARGET MFCOB16), the input file can have any extension you
prefer.

By default, the output file has an extension of .cbl, but you can use the
OUTPUT precompile option to specify a new name and path for the output
modified source file.

Include Files for COBOL

The host-language-specific include files for COBOL have the file extension
.cbl. If you use the ″System/390 host data type support″ feature of IBM
COBOL compiler, the DB2 include files for your applications are in the
following directory:

$HOME/sqllib/include/cobol_i

If you build the DB2 sample programs with the supplied script files, you must
change the include file path specified in the script files to the cobol_i
directory and not the cobol_a directory.

If you do not use the ″System/390 host data type support″ feature of the IBM
COBOL compiler, or you use an earlier version of this compiler, the DB2
include files for your applications are in the following directory:

$HOME/sqllib/include/cobol_a

The include files that are intended to be used in your applications are
described below.

SQL (sql.cbl) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.cbl)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca.cbl)
This file defines the SQL Communication Area (SQLCA)
structure. The SQLCA contains variables that are used by the
database manager to provide an application with error
information about the execution of SQL statements and API
calls.

214 Programming Client Applications

SQLCA_92 (sqlca_92.cbl)
This file contains a FIPS SQL92 Entry Level compliant version
of the SQL Communications Area (SQLCA) structure. This file
should be included in place of the sqlca.cbl file when
writing DB2 applications that conform to the FIPS SQL92
Entry Level standard. The sqlca_92.cbl file is automatically
included by the DB2 precompiler when the LANGLEVEL
precompiler option is set to SQL92E.

SQLCODES (sqlcodes.cbl)
This file defines constants for the SQLCODE field of the
SQLCA structure.

SQLDA (sqlda.cbl)
This file defines the SQL Descriptor Area (SQLDA) structure.
The SQLDA is used to pass data between an application and
the database manager.

SQLEAU (sqleau.cbl)
This file contains constant and structure definitions required
for the DB2 security audit APIs. If you use these APIs, you
need to include this file in your program. This file also
contains constant and keyword value definitions for fields in
the audit trail record. These definitions can be used by
external or vendor audit trail extract programs.

SQLENV (sqlenv.cbl)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return
codes for those interfaces.

SQLETSD (sqletsd.cbl)
This file defines the Table Space Descriptor structure,
SQLETSDESC, which is passed to the Create Database API,
sqlgcrea.

SQLE819A (sqle819a.cbl)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE819B (sqle819b.cbl)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

Chapter 8. Programming in COBOL 215

SQLE850A (sqle850a.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE850B (sqle850b.cbl)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932A (sqle932a.cbl)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.cbl)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQL1252A (sql1252a.cbl)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 500 (EBCDIC
International) binary collation. This file is used by the
CREATE DATABASE API.

SQL1252B (sql1252b.cbl)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 037 (EBCDIC US English)
binary collation. This file is used by the CREATE DATABASE
API.

SQLMON (sqlmon.cbl)
This file defines language-specific calls for the database
system monitor APIs, and the structures, constants, and return
codes for those interfaces.

SQLMONCT (sqlmonct.cbl)
This file contains constant definitions and local data structure
definitions required to call the Database System Monitor APIs.

216 Programming Client Applications

SQLSTATE (sqlstate.cbl)
This file defines constants for the SQLSTATE field of the
SQLCA structure.

SQLUTBCQ (sqlutbcq.cbl)
This file defines the Table Space Container Query data
structure, SQLB-TBSCONTQRY-DATA, which is used with the
table space container query APIs, sqlgstsc, sqlgftcq, and
sqlgtcq.

SQLUTBSQ (sqlutbsq.cbl)
This file defines the Table Space Query data structure,
SQLB-TBSQRY-DATA, which is used with the table space
query APIs, sqlgstsq, sqlgftsq, and sqlgtsq.

SQLUTIL (sqlutil.cbl)
This file defines the language-specific calls for the utility APIs,
and the structures, constants, and codes required for those
interfaces.

Embedded SQL Statements in COBOL

Embedded SQL statements consist of the following three elements:

Element Correct COBOL Syntax

Keyword pair EXEC SQL

Statement string Any valid SQL statement

Statement terminator END-EXEC.

For example:
EXEC SQL SELECT col INTO :hostvar FROM table END-EXEC.

The following rules apply to embedded SQL statements:
v Executable SQL statements must be placed in the PROCEDURE DIVISION.

The SQL statements can be preceded by a paragraph name, just as a
COBOL statement.

v SQL statements can begin in either Area A (columns 8 through 11) or Area
B (columns 12 through 72).

v Start each SQL statement with EXEC SQL and end it with END-EXEC. The
SQL precompiler includes each SQL statement as a comment in the
modified source file.

v You must use the SQL statement terminator. If you do not use it, the
precompiler will continue to the next terminator in the application. This
may cause indeterminate errors.

Chapter 8. Programming in COBOL 217

v SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--), followed
by a string of zero or more characters and terminated by a line end. Do not
place SQL comments after the SQL statement terminator as they will cause
compilation errors because they would appear to be part of the COBOL
language.

v COBOL comments are allowed almost anywhere within an embedded SQL
statement. The exceptions are:
– Comments are not allowed between EXEC and SQL.
– Comments are not allowed in dynamically executed statements.

v SQL statements follow the same line continuation rules as the COBOL
language. However, do not split the EXEC SQL keyword pair between lines.

v Do not use the COBOL COPY statement to include files containing SQL
statements. SQL statements are precompiled before the module is compiled.
The precompiler will ignore the COBOL COPY statement. Instead, use the
SQL INCLUDE statement to include these files.
To locate the INCLUDE file, the DB2® COBOL precompiler searches the
current directory first, then the directories specified by the DB2INCLUDE
environment variable. Consider the following examples:
– EXEC SQL INCLUDE payroll END-EXEC.

If the file specified in the INCLUDE statement is not enclosed in
quotation marks, as above, the precompiler searches for payroll.sqb,
then payroll.cpy, then payroll.cbl, in each directory in which it looks.

– EXEC SQL INCLUDE ’pay/payroll.cbl’ END-EXEC.

If the file name is enclosed in quotation marks, as above, no extension is
added to the name.
If the file name in quotation marks does not contain an absolute path,
the contents of DB2INCLUDE are used to search for the file, prepended
to whatever path is specified in the INCLUDE file name. For example,
with DB2 for AIX, if DB2INCLUDE is set to ‘/disk2:myfiles/cobol’, the
precompiler searches for ‘./pay/payroll.cbl’, then
‘/disk2/pay/payroll.cbl’, and finally
‘./myfiles/cobol/pay/payroll.cbl’. The path where the file is actually
found is displayed in the precompiler messages. On Windows®

platforms, substitute back slashes (\) for the forward slashes in the
above example.

Note: The setting of DB2INCLUDE is cached by the DB2 command line
processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

218 Programming Client Applications

v To continue a string constant to the next line, column 7 of the continuing
line must contain a '-' and column 12 or beyond must contain a string
delimiter.

v SQL arithmetic operators must be delimited by blanks.
v Full-line COBOL comments can occur anywhere in the program, including

within SQL statements.
v Use host variables exactly as declared when referencing host variables in an

SQL statement.
v Substitution of white space characters, such as end-of-line and TAB

characters, occurs as follows:
– When they occur outside quotation marks (but inside SQL statements),

end-of-lines and TABs are substituted by a single space.
– When they occur inside quotation marks, the end-of-line characters

disappear, provided the string is continued properly for a COBOL
program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, Windows-based platforms use Carriage
Return/Line Feed for end-of-line, whereas UNIX-based systems use just a
Line Feed.

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Host Variables in COBOL

The sections that follow describe how to declare and use host variables in
COBOL programs.

Host Variables in COBOL

Host variables are COBOL language variables that are referenced within SQL
statements. They allow an application to pass input data to the database
manager and receive output data from the database manager. After the
application is precompiled, host variables are used by the compiler as any
other COBOL variable.

Related concepts:

v “Host Variable Names in COBOL” on page 220
v “Host Variable Declarations in COBOL” on page 220

Related reference:

v “Syntax for Numeric Host Variables in COBOL” on page 221
v “Syntax for Fixed-Length Character Host Variables in COBOL” on page 222

Chapter 8. Programming in COBOL 219

v “Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 224
v “Syntax for LOB Host Variables in COBOL” on page 225
v “Syntax for LOB Locator Host Variables in COBOL” on page 226
v “Syntax for File Reference Host Variables in COBOL” on page 226

Host Variable Names in COBOL

The SQL precompiler identifies host variables by their declared name. The
following rules apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2®, or db2,

which are reserved for system use.
v FILLER items using the declaration syntaxes described below are permitted

in group host variable declarations, and will be ignored by the precompiler.
However, if you use FILLER more than once within an SQL DECLARE
section, the precompiler fails. You may not include FILLER items in
VARCHAR, LONG VARCHAR, VARGRAPHIC or LONG VARGRAPHIC
declarations.

v You can use hyphens in host variable names.
SQL interprets a hyphen enclosed by spaces as a subtraction operator. Use
hyphens without spaces in host variable names.

v The REDEFINES clause is permitted in host variable declarations.
v Level-88 declarations are permitted in the host variable declare section, but

are ignored.

Related concepts:

v “Host Variable Declarations in COBOL” on page 220

Related reference:

v “Syntax for Numeric Host Variables in COBOL” on page 221
v “Syntax for Fixed-Length Character Host Variables in COBOL” on page 222
v “Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 224
v “Syntax for LOB Host Variables in COBOL” on page 225
v “Syntax for LOB Locator Host Variables in COBOL” on page 226
v “Syntax for File Reference Host Variables in COBOL” on page 226

Host Variable Declarations in COBOL

An SQL declare section must be used to identify host variable declarations.
This section alerts the precompiler to any host variables that can be referenced
in subsequent SQL statements.

220 Programming Client Applications

The COBOL precompiler only recognizes a subset of valid COBOL
declarations.

Related tasks:

v “Declaring Structured Type Host Variables” in the Application Development
Guide: Programming Server Applications

Related reference:

v “Syntax for Numeric Host Variables in COBOL” on page 221
v “Syntax for Fixed-Length Character Host Variables in COBOL” on page 222
v “Syntax for Fixed-Length Graphic Host Variables in COBOL” on page 224
v “Syntax for LOB Host Variables in COBOL” on page 225
v “Syntax for LOB Locator Host Variables in COBOL” on page 226
v “Syntax for File Reference Host Variables in COBOL” on page 226

Syntax for Numeric Host Variables in COBOL

Following is the syntax for numeric host variables.

Syntax for Numeric Host Variables in COBOL

^^ 01
77

variable-name PICTURE
PIC

IS
picture-string ^

^
(1)

COMP-3
IS COMPUTATIONAL-3

USAGE COMP-5
COMPUTATIONAL-5

.
IS

VALUE value

^`

Notes:

1 An alternative for COMP-3 is PACKED-DECIMAL.

Floating Point

^^ 01
77

variable-name
IS

USAGE

(1)
COMPUTATIONAL-1
COMP-1

(2)
COMPUTATIONAL-2
COMP-2

^

Chapter 8. Programming in COBOL 221

^
IS

VALUE value

. ^`

Notes:

1 REAL (SQLTYPE 480), Length 4

2 DOUBLE (SQLTYPE 480), Length 8

Numeric Host Variable Considerations:

1. Picture-string must have one of the following forms:
v S9(m)V9(n)
v S9(m)V
v S9(m)

2. Nines may be expanded (for example., ″S999″ instead of S9(3)″)
3. m and n must be positive integers.

Syntax for Fixed-Length Character Host Variables in COBOL
Following is the syntax for character host variables.

Syntax for Character Host Variables in COBOL: Fixed Length

^^ 01
77

variable-name PICTURE
PIC

IS
picture-string ^

^
IS

VALUE value

. ^`

Variable Length

^^ 01 variable-name . ^`

^^ 49 identifier-1 PICTURE
PIC

IS
S9(4) ^

^
COMP-5

IS COMPUTATIONAL-5
USAGE

IS
VALUE value

. ^`

222 Programming Client Applications

^^ 49 identifier-2 PICTURE
PIC

IS
picture-string

IS
VALUE value

^

^ . ^`

Character Host Variable Consideration:

1. Picture-string must have the form X(m). Alternatively, X's may be expanded
(for example, ″XXX″ instead of ″X(3)″).

2. m is from 1 to 254 for fixed-length strings.
3. m is from 1 to 32 700 for variable-length strings.
4. If m is greater than 32 672, the host variable will be treated as a LONG

VARCHAR string, and its use may be restricted.
5. Use X and 9 as the picture characters in any PICTURE clause. Other

characters are not allowed.
6. Variable-length strings consist of a length item and a value item. You can

use acceptable COBOL names for the length item and the string item.
However, refer to the variable-length string by the collective name in SQL
statements.

7. In a CONNECT statement, such as shown below, COBOL character string
host variables dbname and userid will have any trailing blanks removed
before processing:

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

However, because blanks can be significant in passwords, the p-word host
variable should be declared as a VARCHAR data item, so that your
application can explicitly indicate the significant password length for the
CONNECT statement as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 dbname PIC X(8).
01 userid PIC X(8).
01 p-word.

49 L PIC S9(4) COMP-5.
49 D PIC X(18).

EXEC SQL END DECLARE SECTION END-EXEC.
PROCEDURE DIVISION.

MOVE "sample" TO dbname.
MOVE "userid" TO userid.
MOVE "password" TO D OF p-word.
MOVE 8 TO L of p-word.

EXEC SQL CONNECT TO :dbname USER :userid USING :p-word
END-EXEC.

Chapter 8. Programming in COBOL 223

Syntax for Fixed-Length Graphic Host Variables in COBOL

Following is the syntax for graphic host variables.

Syntax for Graphic Host Variables in COBOL: Fixed Length

^^ 01
77

variable-name PICTURE
PIC

IS
picture-string USAGE ^

^
IS

DISPLAY-1
IS

VALUE value

. ^`

Variable Length

^^ 01 variable-name . ^`

^^ 49 identifier-1 PICTURE
PIC

IS
S9(4) ^

^
COMP-5

IS COMPUTATIONAL-5
USAGE

IS
VALUE value

. ^`

^^ 49 identifier-2 PICTURE
PIC

IS
picture-string USAGE

IS
DISPLAY-1 ^

^
IS

VALUE value

. ^`

Graphic Host Variable Considerations:

1. Picture-string must have the form G(m). Alternatively, G's may be
expanded (for example, ″GGG″ instead of ″G(3)″).

2. m is from 1 to 127 for fixed-length strings.
3. m is from 1 to 16 350 for variable-length strings.
4. If m is greater than 16 336, the host variable will be treated as a LONG

VARGRAPHIC string, and its use may be restricted.

224 Programming Client Applications

Indicator Variables in COBOL

Indicator variables should be declared as a PIC S9(4) COMP-5 data type.

Related concepts:

v “Indicator Tables in COBOL” on page 229

Syntax for LOB Host Variables in COBOL

Following is the syntax for declaring large object (LOB) host variables in
COBOL.

Syntax for LOB Host Variables in COBOL

^^ 01 variable-name
USAGE

IS

SQL TYPE IS BLOB
CLOB
DBCLOB

^

^ (length) .
K
M
G

^`

LOB Host Variable Considerations:

1. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
2. For DBCLOB 1 <= lob-length <= 1 073 741 823.
3. SQL TYPE IS, BLOB, CLOB, DBCLOB, K, M, G can be in either uppercase,

lowercase, or mixed.
4. Initialization within the LOB declaration is not permitted.
5. The host variable name prefixes LENGTH and DATA in the precompiler

generated code.

BLOB Example:

Declaring:
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(2M).

Results in the generation of the following structure:
01 MY-BLOB.

49 MY-BLOB-LENGTH PIC S9(9) COMP-5.
49 MY-BLOB-DATA PIC X(2097152).

CLOB Example:

Declaring:

Chapter 8. Programming in COBOL 225

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(125M).

Results in the generation of the following structure:
01 MY-CLOB.

49 MY-CLOB-LENGTH PIC S9(9) COMP-5.
49 MY-CLOB-DATA PIC X(131072000).

DBCLOB Example:

Declaring:
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(30000).

Results in the generation of the following structure:
01 MY-DBCLOB.

49 MY-DBCLOB-LENGTH PIC S9(9) COMP-5.
49 MY-DBCLOB-DATA PIC G(30000) DISPLAY-1.

Syntax for LOB Locator Host Variables in COBOL

Following is the syntax for declaring large object (LOB) locator host variables
in COBOL.

Syntax for LOB Locator Host Variables in COBOL

^^ 01 variable-name
USAGE

IS

SQL TYPE IS BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR

. ^`

LOB Locator Host Variable Considerations:

1. SQL TYPE IS, BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-LOCATOR
can be either uppercase, lowercase, or mixed.

2. Initialization of locators is not permitted.

BLOB Locator Example (other LOB locator types are similar):

Declaring:
01 MY-LOCATOR USAGE SQL TYPE IS BLOB-LOCATOR.

Results in the generation of the following declaration:
01 MY-LOCATOR PIC S9(9) COMP-5.

Syntax for File Reference Host Variables in COBOL

Following is the syntax for declaring file reference host variables in COBOL.

226 Programming Client Applications

Syntax for File Reference Host Variables in COBOL

^^ 01 variable-name
USAGE

IS

SQL TYPE IS BLOB-FILE
CLOB-FILE
DBCLOB-FILE

. ^`

v SQL TYPE IS, BLOB-FILE, CLOB-FILE, DBCLOB-FILE can be either
uppercase, lowercase, or mixed.

BLOB File Reference Example (other LOB types are similar):

Declaring:
01 MY-FILE USAGE IS SQL TYPE IS BLOB-FILE.

Results in the generation of the following declaration:
01 MY-FILE.

49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-FILE-OPTIONS PIC S9(9) COMP-5.
49 MY-FILE-NAME PIC X(255).

Host Structure Support in COBOL

The COBOL precompiler supports declarations of group data items in the host
variable declare section. Among other things, this provides a shorthand for
referring to a set of elementary data items in an SQL statement. For example,
the following group data item can be used to access some of the columns in
the STAFF table of the SAMPLE database:

01 staff-record.
05 staff-id pic s9(4) comp-5.
05 staff-name.

49 l pic s9(4) comp-5.
49 d pic x(9).

05 staff-info.
10 staff-dept pic s9(4) comp-5.
10 staff-job pic x(5).

Group data items in the declare section can have any of the valid host
variable types described above as subordinate data items. This includes all
numeric and character types, as well as all large object types. You can nest
group data items up to 10 levels. Note that you must declare VARCHAR
character types with the subordinate items at level 49, as in the above
example. If they are not at level 49, the VARCHAR is treated as a group data
item with two subordinates, and is subject to the rules of declaring and using
group data items. In the example above, staff-info is a group data item,
whereas staff-name is a VARCHAR. The same principle applies to LONG
VARCHAR, VARGRAPHIC, and LONG VARGRAPHIC. You may declare
group data items at any level between 02 and 49.

Chapter 8. Programming in COBOL 227

You can use group data items and their subordinates in four ways:

Method 1.

The entire group may be referenced as a single host variable in an SQL
statement:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record
FROM staff WHERE id = 10 END-EXEC.

The precompiler converts the reference to staff-record into a list, separated by
commas, of all the subordinate items declared within staff-record. Each
elementary item is qualified with the group names of all levels to prevent
naming conflicts with other items.This is equivalent to the following method.

Method 2.

The second way of using group data items:
EXEC SQL SELECT id, name, dept, job

INTO
:staff-record.staff-id,
:staff-record.staff-name,
:staff-record.staff-info.staff-dept,
:staff-record.staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Note: The reference to staff-id is qualified with its group name using the
prefix staff-record., and not staff-id of staff-record as in pure
COBOL.

Assuming there are no other host variables with the same names as the
subordinates of staff-record, the above statement can also be coded as in
method 3, eliminating the explicit group qualification.

Method 3.

Here, subordinate items are referenced in a typical COBOL fashion, without
being qualified to their particular group item:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-dept,
:staff-job
FROM staff WHERE id = 10 END-EXEC.

228 Programming Client Applications

As in pure COBOL, this method is acceptable to the precompiler as long as a
given subordinate item can be uniquely identified. If, for example, staff-job
occurs in more than one group, the precompiler issues an error indicating an
ambiguous reference:

SQL0088N Host variable "staff-job" is ambiguous.

Method 4.

To resolve the ambiguous reference, you can use partial qualification of the
subordinate item, for example:

EXEC SQL SELECT id, name, dept, job
INTO
:staff-id,
:staff-name,
:staff-info.staff-dept,
:staff-info.staff-job
FROM staff WHERE id = 10 END-EXEC.

Because a reference to a group item alone, as in method 1, is equivalent to a
comma-separated list of its subordinates, there are instances where this type
of reference leads to an error. For example:

EXEC SQL CONNECT TO :staff-record END-EXEC.

Here, the CONNECT statement expects a single character-based host variable.
By giving the staff-record group data item instead, the host variable results
in the following precompile-time error:

SQL0087N Host variable "staff-record" is a structure used where
structure references are not permitted.

Other uses of group items that cause an SQL0087N to occur include
PREPARE, EXECUTE IMMEDIATE, CALL, indicator variables, and SQLDA
references. Groups with only one subordinate are permitted in such situations,
as are references to individual subordinates, as in methods 2, 3, and 4 above.

Indicator Tables in COBOL

The COBOL precompiler supports the declaration of tables of indicator
variables, which are convenient to use with group data items. They are
declared as follows:

01 <indicator-table-name>.
05 <indicator-name> pic s9(4) comp-5

occurs <table-size> times.

For example:
01 staff-indicator-table.

05 staff-indicator pic s9(4) comp-5
occurs 7 times.

Chapter 8. Programming in COBOL 229

This indicator table can be used effectively with the first format of group item
reference above:

EXEC SQL SELECT id, name, dept, job
INTO :staff-record :staff-indicator
FROM staff WHERE id = 10 END-EXEC.

Here, the precompiler detects that staff-indicator was declared as an
indicator table, and expands it into individual indicator references when it
processes the SQL statement. staff-indicator(1) is associated with staff-id
of staff-record, staff-indicator(2) is associated with staff-name of
staff-record, and so on.

Note: If there are k more indicator entries in the indicator table than there are
subordinates in the data item (for example, if staff-indicator has 10
entries, making k=6), the k extra entries at the end of the indicator table
are ignored. Likewise, if there are k fewer indicator entries than
subordinates, the last k subordinates in the group item do not have
indicators associated with them. Note that you can refer to individual
elements in an indicator table in an SQL statement.

Related concepts:

v “Indicator Variables in COBOL” on page 225

REDEFINES in COBOL Group Data Items

You can use the REDEFINES clause when declaring host variables. If you
declare a member of a group data item with the REDEFINES clause, and that
group data item is referred to as a whole in an SQL statement, any
subordinate items containing the REDEFINES clause are not expanded. For
example:

01 foo.
10 a pic s9(4) comp-5.
10 a1 redefines a pic x(2).
10 b pic x(10).

Referring to foo in an SQL statement as follows:
... INTO :foo ...

The above statement is equivalent to:
... INTO :foo.a, :foo.b ...

That is, the subordinate item a1 that is declared with the REDEFINES clause,
is not automatically expanded out in such situations. If a1 is unambiguous,
you can explicitly refer to a subordinate with a REDEFINES clause in an SQL
statement, as follows:

... INTO :foo.a1 ...

230 Programming Client Applications

or
... INTO :a1 ...

SQL Declare Section with Host Variables for COBOL

The following is a sample SQL declare section with a host variable declared
for each supported SQL data type.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
*

01 age PIC S9(4) COMP-5.
01 divis PIC S9(9) COMP-5.
01 salary PIC S9(6)V9(3) COMP-3.
01 bonus USAGE IS COMP-1.
01 wage USAGE IS COMP-2.
01 nm PIC X(5).
01 varchar.

49 leng PIC S9(4) COMP-5.
49 strg PIC X(14).

01 longvchar.
49 len PIC S9(4) COMP-5.
49 str PIC X(6027).

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(1M).
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS CLOB-LOCATOR.
01 MY-CLOB-FILE USAGE IS SQL TYPE IS CLOB-FILE.
01 MY-BLOB USAGE IS SQL TYPE IS BLOB(1M).
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS BLOB-LOCATOR.
01 MY-BLOB-FILE USAGE IS SQL TYPE IS BLOB-FILE.
01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(1M).
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS DBCLOB-LOCATOR.
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS DBCLOB-FILE.
01 MY-PICTURE PIC G(16000) USAGE IS DISPLAY-1.
01 dt PIC X(10).
01 tm PIC X(8).
01 tmstmp PIC X(26).
01 wage-ind PIC S9(4) COMP-5.

*
EXEC SQL END DECLARE SECTION END-EXEC.

Related reference:

v “Supported SQL Data Types in COBOL” on page 231

Data Type Considerations for COBOL

The sections that follow describe how SQL data types map to COBOL data
types.

Supported SQL Data Types in COBOL

Certain predefined COBOL data types correspond to column types. Only
these COBOL data types can be declared as host variables.

Chapter 8. Programming in COBOL 231

The following table shows the COBOL equivalent of each column type. When
the precompiler finds a host variable declaration, it determines the
appropriate SQL type value. The database manager uses this value to convert
the data exchanged between the application and itself.

Not every possible data description for host variables is recognized. COBOL
data items must be consistent with the ones described in the following table.
If you use other data items, an error can result.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 15. SQL Data Types Mapped to COBOL Declarations

SQL Column Type1 COBOL Data Type SQL Column Type
Description

SMALLINT
(500 or 501)

01 name PIC S9(4) COMP-5. 16-bit signed integer

INTEGER
(496 or 497)

01 name PIC S9(9) COMP-5. 32-bit signed integer

BIGINT
(492 or 493)

01 name PIC S9(18) COMP-5. 64-bit signed integer

DECIMAL(p,s)
(484 or 485)

01 name PIC S9(m)V9(n) COMP-3. Packed decimal

REAL2

(480 or 481)
01 name USAGE IS COMP-1. Single-precision floating

point

DOUBLE3

(480 or 481)
01 name USAGE IS COMP-2. Double-precision floating

point

CHAR(n)
(452 or 453)

01 name PIC X(n). Fixed-length character
string

VARCHAR(n)
(448 or 449)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC X(n).

1<=n<=32 672

Variable-length character
string

LONG VARCHAR
(456 or 457)

01 name.
49 length PIC S9(4) COMP-5.
49 data PIC X(n).

32 673<=n<=32 700

Long variable-length
character string

CLOB(n)
(408 or 409)

01 MY-CLOB USAGE IS SQL TYPE IS CLOB(n).

1<=n<=2 147 483 647

Large object
variable-length character
string

CLOB locator variable4

(964 or 965)
01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS
CLOB-LOCATOR.

Identifies CLOB entities
residing on the server

CLOB file reference variable4

(920 or 921)
01 MY-CLOB-FILE USAGE IS SQL TYPE IS
CLOB-FILE.

Descriptor for file
containing CLOB data

232 Programming Client Applications

Table 15. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type1 COBOL Data Type SQL Column Type
Description

BLOB(n)
(404 or 405)

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(n).

1<=n<=2 147 483 647

Large object
variable-length binary
string

BLOB locator variable4

(960 or 961)
01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS
BLOB-LOCATOR.

Identifies BLOB entities
residing on the server

BLOB file reference variable4

(916 or 917)
01 MY-CLOB-FILE USAGE IS SQL TYPE IS
CLOB-FILE.

Descriptor for file
containing CLOB data

DATE
(384 or 385)

01 identifier PIC X(10). 10-byte character string

TIME
(388 or 389)

01 identifier PIC X(8). 8-byte character string

TIMESTAMP
(392 or 393)

01 identifier PIC X(26). 26-byte character string

Note: The following data types are only available in the DBCS environment.

GRAPHIC(n)
(468 or 469)

01 name PIC G(n) DISPLAY-1. Fixed-length double-byte
character string

VARGRAPHIC(n)
(464 or 465)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

1<=n<=16 336

Variable length
double-byte character
string with 2-byte string
length indicator

LONG VARGRAPHIC
(472 or 473)

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

Variable length
double-byte character
string with 2-byte string
length indicator

DBCLOB(n)
(412 or 413)

01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(n).

1<=n<=1 073 741 823

Large object
variable-length
double-byte character
string with 4-byte string
length indicator

DBCLOB locator variable4

(968 or 969)
01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS
DBCLOB-LOCATOR.

Identifies DBCLOB entities
residing on the server

DBCLOB file reference variable4

(924 or 925)
01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS
DBCLOB-FILE.

Descriptor for file
containing DBCLOB data

Chapter 8. Programming in COBOL 233

Table 15. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type1 COBOL Data Type SQL Column Type
Description

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following are additional rules for supported COBOL data types:
v PIC S9 and COMP-3/COMP-5 are required where shown.
v You can use level number 77 instead of 01 for all column types except

VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC and
all LOB variable types.

v Use the following rules when declaring host variables for DECIMAL(p,s)
column types. See the following sample:

01 identifier PIC S9(m)V9(n) COMP-3
– Use V to denote the decimal point.
– Values for n and m must be greater than or equal to 1.
– The value for n + m cannot exceed 31.
– The value for s equals the value for n.
– The value for p equals the value for n + m.
– The repetition factors (n) and (m) are optional. The following examples

are all valid:
01 identifier PIC S9(3)V COMP-3
01 identifier PIC SV9(3) COMP-3
01 identifier PIC S9V COMP-3
01 identifier PIC SV9 COMP-3

– PACKED-DECIMAL can be used instead of COMP-3.
v Arrays are not supported by the COBOL precompiler.

Related concepts:

v “SQL Declare Section with Host Variables for COBOL” on page 231

BINARY/COMP-4 COBOL Data Types

The DB2® COBOL precompiler supports the use of BINARY, COMP, and
COMP-4 data types wherever integer host variables and indicators are

234 Programming Client Applications

permitted, as long as the target COBOL compiler views (or can be made to
view) the BINARY, COMP, or COMP-4 data types as equivalent to the
COMP-5 data type. In this book, such host variables and indicators are shown
with the type COMP-5. Target compilers supported by DB2 that treat COMP,
COMP-4, BINARY COMP and COMP-5 as equivalent are:
v IBM® COBOL Set for AIX®

v Micro Focus COBOL for AIX

FOR BIT DATA in COBOL

Certain database columns can be declared FOR BIT DATA. These columns,
which generally contain characters, are used to hold binary information. The
CHAR(n), VARCHAR, LONG VARCHAR, and BLOB data types are the
COBOL host variable types that can contain binary data. Use these data types
when working with columns with the FOR BIT DATA attribute.

Related reference:

v “Supported SQL Data Types in COBOL” on page 231

SQLSTATE and SQLCODE Variables in COBOL

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 SQLSTATE PICTURE X(5).
01 SQLCODE PICTURE S9(9) USAGE COMP.
.
.
.
EXEC SQL END DECLARE SECTION END-EXEC.

If neither of these is specified, the SQLCODE declaration is assumed during
the precompile step. The 01 can also be 77 and the PICTURE can be PIC. Note
that when using this option, the INCLUDE SQLCA statement should not be
specified.

For applications made up of multiple source files, the SQLCODE and
SQLSTATE declarations may be included in each source file as shown above.

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for COBOL

Any graphic data sent from your application running under an eucJp or
eucTW code set, or connected to a UCS-2 database, is tagged with the UCS-2
code page identifier. Your application must convert a graphic-character string
to UCS-2 before sending it to a the database server. Likewise, graphic data

Chapter 8. Programming in COBOL 235

retrieved from a UCS-2 database by any application, or from any database by
an application running under an EUC eucJP or eucTW code page, is encoded
using UCS-2. This requires your application to convert from UCS-2 to your
application code page internally, unless the user is to be presented with UCS-2
data.

Your application is responsible for converting to and from UCS-2 because this
conversion must be conducted before the data is copied to, and after it is
copied from, the SQLDA. DB2 Universal Database does not supply any
conversion routines that are accessible to your application. Instead, you must
use the system calls available from your operating system. In the case of a
UCS-2 database, you may also consider using the VARCHAR and
VARGRAPHIC scalar functions.

Related concepts:

v “Japanese and Traditional Chinese EUC and UCS-2 Code Set
Considerations” on page 404

Related reference:

v “VARCHAR scalar function” in the SQL Reference, Volume 1

v “VARGRAPHIC scalar function” in the SQL Reference, Volume 1

Object Oriented COBOL

If you are using object oriented COBOL, you must observe the following:
v SQL statements can only appear in the first program or class in a compile

unit. This restriction exists because the precompiler inserts temporary
working data into the first Working-Storage section it sees.

v In an object oriented COBOL program, every class containing SQL
statements must have a class-level Working-Storage Section, even if it is
empty. This section is used to store data definitions generated by the
precompiler.

236 Programming Client Applications

Chapter 9. Programming in FORTRAN

Programming Considerations for FORTRAN 237
Language Restrictions in FORTRAN . . . 237

Call by Reference in FORTRAN 238
Debug and Comment Lines in FORTRAN 238
Precompilation Considerations for
FORTRAN 238
Multiple-Thread Database Access in
FORTRAN 238

Input and Output Files for FORTRAN . . . 238
Include Files 239

Include Files for FORTRAN 239
Include Files in FORTRAN Applications 241

Embedded SQL Statements in FORTRAN 242
Host Variables in FORTRAN 244

Host Variables in FORTRAN 244
Host Variable Names in FORTRAN . . . 244
Host Variable Declarations in FORTRAN 245
Syntax for Numeric Host Variables in
FORTRAN 245

Syntax for Character Host Variables in
FORTRAN 246
Indicator Variables in FORTRAN. . . . 247
Syntax for Large Object (LOB) Host
Variables in FORTRAN 248
Syntax for Large Object (LOB) Locator
Host Variables in FORTRAN 249
Syntax for File Reference Host Variables
in FORTRAN 249
SQL Declare Section with Host Variables
for FORTRAN 250

Supported SQL Data Types in FORTRAN 251
Considerations for Multi-Byte Character Sets
in FORTRAN 252
Japanese or Traditional Chinese EUC, and
UCS-2 Considerations for FORTRAN . . . 252
SQLSTATE and SQLCODE Variables in
FORTRAN 253

Programming Considerations for FORTRAN

Special host-language programming considerations are discussed in the
following sections. Included is information on language restrictions,
host-language-specific include files, embedding SQL statements, host
variables, and supported data types for host variables.

Note: FORTRAN support stabilized in DB2 Version 5, and no enhancements
for FORTRAN support are planned for the future. For example, the
FORTRAN precompiler cannot handle SQL object identifiers, such as
table names, that are longer than 18 bytes. To use features introduced to
DB2 after Version 5, such as table names from 19 to 128 bytes long, you
must write your applications in a language other than FORTRAN.

Language Restrictions in FORTRAN

The sections that follow describe the language restrictions for FORTRAN.

© Copyright IBM Corp. 1993-2002 237

Call by Reference in FORTRAN

Some API parameters require addresses rather than values in the call
variables. The database manager provides the GET ADDRESS,
DEREFERENCE ADDRESS, and COPY MEMORY APIs, which simplify your
ability to provide these parameters.

Related reference:

v “sqlgdref - Dereference Address” in the Administrative API Reference

v “sqlgaddr - Get Address” in the Administrative API Reference

v “sqlgmcpy - Copy Memory” in the Administrative API Reference

Debug and Comment Lines in FORTRAN

Some FORTRAN compilers treat lines with a 'D' or 'd' in column 1 as
conditional lines. These lines can either be compiled for debugging or treated
as comments. The precompiler will always treat lines with a 'D' or 'd' in
column 1 as comments.

Precompilation Considerations for FORTRAN

The following items affect the precompiling process:
v The precompiler allows only digits, blanks, and tab characters within

columns 1-5 on continuation lines.
v Hollerith constants are not supported in .sqf source files.

Multiple-Thread Database Access in FORTRAN

FORTRAN does not support multiple-thread database access.

Input and Output Files for FORTRAN

By default, the input file has an extension of .sqf, but if you use the TARGET
precompile option the input file can have any extension you prefer.

By default, the output file has an extension of .f on UNIX-based platforms,
and .for on Windows-based platforms; however, you can use the OUTPUT
precompile option to specify a new name and path for the output modified
source file.

Related reference:

v “PRECOMPILE” in the Command Reference

238 Programming Client Applications

Include Files

The sections that follow describe include files for FORTRAN.

Include Files for FORTRAN

The host-language-specific include files for FORTRAN have the file extension
.f on UNIX-based platforms, and .for on Windows-based platforms. You can
use the following FORTRAN include files in your applications.

SQL (sql.f) This file includes language-specific prototypes for the binder,
precompiler, and error message retrieval APIs. It also defines
system constants.

SQLAPREP (sqlaprep.f)
This file contains definitions required to write your own
precompiler.

SQLCA (sqlca_cn.f, sqlca_cs.f)
This file defines the SQL Communication Area (SQLCA)
structure. The SQLCA contains variables that are used by the
database manager to provide an application with error
information about the execution of SQL statements and API
calls.

Two SQLCA files are provided for FORTRAN applications.
The default, sqlca_cs.f, defines the SQLCA structure in an
IBM SQL compatible format. The sqlca_cn.f file, precompiled
with the SQLCA NONE option, defines the SQLCA structure for
better performance.

SQLCA_92 (sqlca_92.f)
This file contains a FIPS SQL92 Entry Level compliant version
of the SQL Communications Area (SQLCA) structure. This file
should be included in place of either the sqlca_cn.f or the
sqlca_cs.f files when writing DB2 applications that conform
to the FIPS SQL92 Entry Level standard. The sqlca_92.f file is
automatically included by the DB2 precompiler when the
LANGLEVEL precompiler option is set to SQL92E.

SQLCODES (sqlcodes.f)
This file defines constants for the SQLCODE field of the
SQLCA structure.

SQLDA (sqldact.f)
This file defines the SQL Descriptor Area (SQLDA) structure.
The SQLDA is used to pass data between an application and
the database manager.

SQLEAU (sqleau.f)
This file contains constant and structure definitions required

Chapter 9. Programming in FORTRAN 239

for the DB2 security audit APIs. If you use these APIs, you
need to include this file in your program. This file also
contains constant and keyword value definitions for fields in
the audit trail record. These definitions can be used by
external or vendor audit trail extract programs.

SQLENV (sqlenv.f)
This file defines language-specific calls for the database
environment APIs, and the structures, constants, and return
codes for those interfaces.

SQLE819A (sqle819a.f)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE819B (sqle819b.f)
If the code page of the database is 819 (ISO Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE850A (sqle850a.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 500 (EBCDIC International)
binary collation. This file is used by the CREATE DATABASE
API.

SQLE850B (sqle850b.f)
If the code page of the database is 850 (ASCII Latin-1), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 037 (EBCDIC US English) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932A (sqle932a.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5035 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

SQLE932B (sqle932b.f)
If the code page of the database is 932 (ASCII Japanese), this
sequence sorts character strings that are not FOR BIT DATA
according to the host CCSID 5026 (EBCDIC Japanese) binary
collation. This file is used by the CREATE DATABASE API.

240 Programming Client Applications

SQL1252A (sql1252a.f)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 500 (EBCDIC
International) binary collation. This file is used by the
CREATE DATABASE API.

SQL1252B (sql1252b.f)
If the code page of the database is 1252 (Windows Latin-1),
this sequence sorts character strings that are not FOR BIT
DATA according to the host CCSID 037 (EBCDIC US English)
binary collation. This file is used by the CREATE DATABASE
API.

SQLMON (sqlmon.f)
This file defines language-specific calls for the database
system monitor APIs, and the structures, constants, and return
codes for those interfaces.

SQLSTATE (sqlstate.f)
This file defines constants for the SQLSTATE field of the
SQLCA structure.

SQLUTIL (sqlutil.f)
This file defines the language-specific calls for the utility APIs,
and the structures, constants, and codes required for those
interfaces.

Related concepts:

v “Include Files in FORTRAN Applications” on page 241

Include Files in FORTRAN Applications

There are two methods for including files: the EXEC SQL INCLUDE statement
and the FORTRAN INCLUDE statement. The precompiler will ignore
FORTRAN INCLUDE statements, and only process files included with the
EXEC SQL statement.

To locate the INCLUDE file, the DB2® FORTRAN precompiler searches the
current directory first, then the directories specified by the DB2INCLUDE
environment variable. Consider the following examples:
v EXEC SQL INCLUDE payroll

If the file specified in the INCLUDE statement is not enclosed in quotation
marks, as above, the precompiler searches for payroll.sqf, then payroll.f
(payroll.for on Windows- based platforms) in each directory in which it
looks.

v EXEC SQL INCLUDE ’pay/payroll.f’

Chapter 9. Programming in FORTRAN 241

If the file name is enclosed in quotation marks, as above, no extension is
added to the name. (For Windows-based platforms, the file would be
specified as ’pay\payroll.for’.)
If the file name in quotation marks does not contain an absolute path, then
the contents of DB2INCLUDE are used to search for the file, prepended to
whatever path is specified in the INCLUDE file name. For example, with
DB2 for UNIX-based platforms, if DB2INCLUDE is set to
‘/disk2:myfiles/fortran’, the precompiler searches for ‘./pay/payroll.f’,
then ‘/disk2/pay/payroll.f’, and finally ‘./myfiles/cobol/pay/payroll.f’.
The path where the file is actually found is displayed in the precompiler
messages. On Windows-based platforms, substitute back slashes (\) for the
forward slashes, and substitute ‘for’ for the ‘f’ extension in the above
example.

Note: The setting of DB2INCLUDE is cached by the DB2 command line
processor. To change the setting of DB2INCLUDE after any CLP
commands have been issued, enter the TERMINATE command, then
reconnect to the database and precompile as usual.

Related concepts:

v “DB2 registry and environment variables” in the Administration Guide:
Performance

Related reference:

v “Include Files for FORTRAN” on page 239

Embedded SQL Statements in FORTRAN

Embedded SQL statements consist of the following three elements:

Element Correct FORTRAN Syntax

Keyword EXEC SQL

Statement string Any valid SQL statement with blanks as
delimiters

Statement terminator End of source line.

The end of the source line serves as the statement terminator. If the line is
continued, the statement terminator is the end of the last continued line.

For example:
EXEC SQL SELECT COL INTO :hostvar FROM TABLE

The following rules apply to embedded SQL statements:

242 Programming Client Applications

v Code SQL statements between columns 7 and 72 only.
v Use full-line FORTRAN comments, or SQL comments, but do not use the

FORTRAN end-of-line comment '!' character in SQL statements. This
comment character may be used elsewhere, including host variable
declarations.

v Use blanks as delimiters when coding embedded SQL statements, even
though FORTRAN statements do not require blanks as delimiters.

v Use only one SQL statement for each FORTRAN source line. Normal
FORTRAN continuation rules apply for statements that require more than
one source line. Do not split the EXEC SQL keyword pair between lines.

v SQL comments are allowed on any line that is part of an embedded SQL
statement. These comments are not allowed in dynamically executed
statements. The format for an SQL comment is a double dash (--), followed
by a string of zero or more characters and terminated by a line end.

v FORTRAN comments are allowed almost anywhere within an embedded
SQL statement. The exceptions are:
– Comments are not allowed between EXEC and SQL.
– Comments are not allowed in dynamically executed statements.
– The extension of using ! to code a FORTRAN comment at the end of a

line is not supported within an embedded SQL statement.
v Use exponential notation when specifying a real constant in SQL

statements. The database manager interprets a string of digits with a
decimal point in an SQL statement as a decimal constant, not a real
constant.

v Statement numbers are invalid on SQL statements that precede the first
executable FORTRAN statement. If an SQL statement has a statement
number associated with it, the precompiler generates a labeled CONTINUE
statement that directly precedes the SQL statement.

v Use host variables exactly as declared when referencing host variables
within an SQL statement.

v Substitution of white space characters, such as end-of-line and TAB
characters, occurs as follows:
– When they occur outside quotation marks (but inside SQL statements),

end-of-lines and TABs are substituted by a single space.
– When they occur inside quotation marks, the end-of-line characters

disappear, provided the string is continued properly for a FORTRAN
program. TABs are not modified.

Note that the actual characters used for end-of-line and TAB vary from
platform to platform. For example, Windows-based platforms use the
Carriage Return/Line Feed for end-of-line, whereas UNIX-based platforms
use just a Line Feed.

Chapter 9. Programming in FORTRAN 243

Related reference:

v Appendix A, “Supported SQL Statements” on page 475

Host Variables in FORTRAN

The sections that follow describe how to declare and use host variables in
FORTRAN programs.

Host Variables in FORTRAN

Host variables are FORTRAN language variables that are referenced within
SQL statements. They allow an application to pass input data to the database
manager and receive output data from it. After the application is precompiled,
host variables are used by the compiler as any other FORTRAN variable.

Related concepts:

v “Host Variable Names in FORTRAN” on page 244
v “Host Variable Declarations in FORTRAN” on page 245
v “Indicator Variables in FORTRAN” on page 247

Related reference:

v “Syntax for Numeric Host Variables in FORTRAN” on page 245
v “Syntax for Character Host Variables in FORTRAN” on page 246
v “Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 248
v “Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on

page 249
v “Syntax for File Reference Host Variables in FORTRAN” on page 249

Host Variable Names in FORTRAN

The SQL precompiler identifies host variables by their declared name. The
following suggestions apply:
v Specify variable names up to 255 characters in length.
v Begin host variable names with prefixes other than SQL, sql, DB2®, or db2,

which are reserved for system use.

Related concepts:

v “Host Variable Declarations in FORTRAN” on page 245

Related reference:

v “Syntax for Numeric Host Variables in FORTRAN” on page 245
v “Syntax for Character Host Variables in FORTRAN” on page 246
v “Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 248

244 Programming Client Applications

v “Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on
page 249

v “Syntax for File Reference Host Variables in FORTRAN” on page 249

Host Variable Declarations in FORTRAN

An SQL declare section must be used to identify host variable declarations.
This alerts the precompiler to any host variables that can be referenced in
subsequent SQL statements.

The FORTRAN precompiler only recognizes a subset of valid FORTRAN
declarations as valid host variable declarations. These declarations define
either numeric or character variables. A numeric host variable can be used as
an input or output variable for any numeric SQL input or output value. A
character host variable can be used as an input or output variable for any
character, date, time or timestamp SQL input or output value. The
programmer must ensure that output variables are long enough to contain the
values that they will receive.

Related tasks:

v “Declaring Structured Type Host Variables” in the Application Development
Guide: Programming Server Applications

Related reference:

v “Syntax for Numeric Host Variables in FORTRAN” on page 245
v “Syntax for Character Host Variables in FORTRAN” on page 246
v “Syntax for Large Object (LOB) Host Variables in FORTRAN” on page 248
v “Syntax for Large Object (LOB) Locator Host Variables in FORTRAN” on

page 249
v “Syntax for File Reference Host Variables in FORTRAN” on page 249

Syntax for Numeric Host Variables in FORTRAN

Following is the syntax for numeric host variables in FORTRAN.

Syntax for Numeric Host Variables in FORTRAN

^^ INTEGER*2
INTEGER*4
REAL*4
REAL *8
DOUBLE PRECISION

_

,

varname
/ initial-value /

^`

Chapter 9. Programming in FORTRAN 245

Numeric Host Variable Considerations:

1. REAL*8 and DOUBLE PRECISION are equivalent.
2. Use an E rather than a D as the exponent indicator for REAL*8 constants.

Syntax for Character Host Variables in FORTRAN

Following is the syntax for fixed-length character host variables.

Syntax for Character Host Variables in FORTRAN: Fixed Length

^^ _

,

CHARACTER varname
*n / initial-value /

^`

Following is the syntax for variable-length character host variables.

Variable Length

^^ _

,

SQL TYPE IS VARCHAR (length) varname ^`

Character Host Variable Considerations:

1. *n has a maximum value of 254.
2. When length is between 1 and 32 672 inclusive, the host variable has type

VARCHAR(SQLTYPE 448).
3. When length is between 32 673 and 32 700 inclusive, the host variable has

type LONG VARCHAR(SQLTYPE 456).
4. Initialization of VARCHAR and LONG VARCHAR host variables is not

permitted within the declaration.

VARCHAR Example:

Declaring:
sql type is varchar(1000) my_varchar

Results in the generation of the following structure:
character my_varchar(1000+2)
integer*2 my_varchar_length
character my_varchar_data(1000)
equivalence(my_varchar(1),
+ my_varchar_length)
equivalence(my_varchar(3),
+ my_varchar_data)

246 Programming Client Applications

The application may manipulate both my_varchar_length and
my_varchar_data; for example, to set or examine the contents of the host
variable. The base name (in this case, my_varchar), is used in SQL statements
to refer to the VARCHAR as a whole.

LONG VARCHAR Example:

Declaring:
sql type is varchar(10000) my_lvarchar

Results in the generation of the following structure:
character my_lvarchar(10000+2)
integer*2 my_lvarchar_length
character my_lvarchar_data(10000)
equivalence(my_lvarchar(1),
+ my_lvarchar_length)
equivalence(my_lvarchar(3),
+ my_lvarchar_data)

The application may manipulate both my_lvarchar_length and
my_lvarchar_data; for example, to set or examine the contents of the host
variable. The base name (in this case, my_lvarchar), is used in SQL statements
to refer to the LONG VARCHAR as a whole.

Note: In a CONNECT statement, such as in the following example, the
FORTRAN character string host variables dbname and userid will have
any trailing blanks removed before processing.

EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

However, because blanks can be significant in passwords, you should
declare host variables for passwords as VARCHAR, and have the
length field set to reflect the actual password length:

EXEC SQL BEGIN DECLARE SECTION
character*8 dbname, userid
sql type is varchar(18) passwd

EXEC SQL END DECLARE SECTION
character*18 passwd_string
equivalence(passwd_data,passwd_string)
dbname = ’sample’
userid = ’userid’
passwd_length= 8
passwd_string = ’password’
EXEC SQL CONNECT TO :dbname USER :userid USING :passwd

Indicator Variables in FORTRAN

Indicator variables should be declared as an INTEGER*2 data type.

Chapter 9. Programming in FORTRAN 247

Syntax for Large Object (LOB) Host Variables in FORTRAN

Following is the syntax for declaring large object (LOB) host variables in
FORTRAN.

Syntax for Large Object (LOB) Host Variables in FORTRAN

^^ _

,

SQL TYPE IS BLOB (length) variable-name
CLOB K

M
G

^`

LOB Host Variable Considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQL TYPE IS, BLOB, CLOB, K, M, G can be in either uppercase, lowercase,

or mixed.
3. For BLOB and CLOB 1 <= lob-length <= 2 147 483 647.
4. The initialization of a LOB within a LOB declaration is not permitted.
5. The host variable name prefixes ’length’ and ’data’ in the precompiler

generated code.

BLOB Example:

Declaring:
sql type is blob(2m) my_blob

Results in the generation of the following structure:
character my_blob(2097152+4)
integer*4 my_blob_length
character my_blob_data(2097152)
equivalence(my_blob(1),
+ my_blob_length)
equivalence(my_blob(5),
+ my_blob_data)

CLOB Example:

Declaring:
sql type is clob(125m) my_clob

Results in the generation of the following structure:
character my_clob(131072000+4)
integer*4 my_clob_length
character my_clob_data(131072000)

248 Programming Client Applications

equivalence(my_clob(1),
+ my_clob_length)
equivalence(my_clob(5),
+ my_clob_data)

Syntax for Large Object (LOB) Locator Host Variables in FORTRAN

Following is the syntax for declaring large object (LOB) locator host variables
in FORTRAN.

Syntax for Large Object (LOB) Locator Host Variables in FORTRAN

^^ _

,

SQL TYPE IS BLOB_LOCATOR variable-name
CLOB_LOCATOR

^`

LOB Locator Host Variable Considerations:

1. GRAPHIC types are not supported in FORTRAN.
2. SQL TYPE IS, BLOB_LOCATOR, CLOB_LOCATOR can be either

uppercase, lowercase, or mixed.
3. Initialization of locators is not permitted.

CLOB Locator Example (BLOB locator is similar):

Declaring:
SQL TYPE IS CLOB_LOCATOR my_locator

Results in the generation of the following declaration:
integer*4 my_locator

Syntax for File Reference Host Variables in FORTRAN

Following is the syntax for declaring file reference host variables in
FORTRAN.

Syntax for File Reference Host Variables in FORTRAN

^^ _

,

SQL TYPE IS BLOB_FILE variable-name
CLOB_FILE

^`

File Reference Host Variable Considerations:

1. Graphic types are not supported in FORTRAN.

Chapter 9. Programming in FORTRAN 249

2. SQL TYPE IS, BLOB_FILE, CLOB_FILE can be either uppercase, lowercase,
or mixed.

Example of a BLOB file reference variable (CLOB file reference variable is
similar):

SQL TYPE IS BLOB_FILE my_file

Results in the generation of the following declaration:
character my_file(267)
integer*4 my_file_name_length
integer*4 my_file_data_length
integer*4 my_file_file_options
character*255 my_file_name
equivalence(my_file(1),
+ my_file_name_length)
equivalence(my_file(5),
+ my_file_data_length)
equivalence(my_file(9),
+ my_file_file_options)
equivalence(my_file(13),
+ my_file_name)

SQL Declare Section with Host Variables for FORTRAN

The following is a sample SQL declare section with a host variable declared
for each supported data type:

EXEC SQL BEGIN DECLARE SECTION
INTEGER*2 AGE /26/
INTEGER*4 DEPT
REAL*4 BONUS
REAL*8 SALARY
CHARACTER MI
CHARACTER*112 ADDRESS
SQL TYPE IS VARCHAR (512) DESCRIPTION
SQL TYPE IS VARCHAR (32000) COMMENTS
SQL TYPE IS CLOB (1M) CHAPTER
SQL TYPE IS CLOB_LOCATOR CHAPLOC
SQL TYPE IS CLOB_FILE CHAPFL
SQL TYPE IS BLOB (1M) VIDEO
SQL TYPE IS BLOB_LOCATOR VIDLOC
SQL TYPE IS BLOB_FILE VIDFL
CHARACTER*10 DATE
CHARACTER*8 TIME
CHARACTER*26 TIMESTAMP
INTEGER*2 WAGE_IND

EXEC SQL END DECLARE SECTION

Related reference:

v “Supported SQL Data Types in FORTRAN” on page 251

250 Programming Client Applications

Supported SQL Data Types in FORTRAN

Certain predefined FORTRAN data types correspond to database manager
column types. Only these FORTRAN data types can be declared as host
variables.

The following table shows the FORTRAN equivalent of each column type.
When the precompiler finds a host variable declaration, it determines the
appropriate SQL type value. The database manager uses this value to convert
the data exchanged between the application and itself.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 16. SQL Data Types Mapped to FORTRAN Declarations

SQL Column Type1 FORTRAN Data Type SQL Column Type Description

SMALLINT
(500 or 501)

INTEGER*2 16-bit, signed integer

INTEGER
(496 or 497)

INTEGER*4 32-bit, signed integer

REAL2

(480 or 481)
REAL*4 Single precision floating point

DOUBLE3

(480 or 481)
REAL*8 Double precision floating point

DECIMAL(p,s)
(484 or 485)

No exact equivalent; use REAL*8 Packed decimal

CHAR(n)
(452 or 453)

CHARACTER*n Fixed-length character string of length n
where n is from 1 to 254

VARCHAR(n)
(448 or 449)

SQL TYPE IS VARCHAR(n) where
n is from 1 to 32 672

Variable-length character string

LONG VARCHAR
(456 or 457)

SQL TYPE IS VARCHAR(n) where
n is from 32 673 to 32 700

Long variable-length character string

CLOB(n)
(408 or 409)

SQL TYPE IS CLOB (n) where n is
from 1 to 2 147 483 647

Large object variable-length character string

CLOB locator variable4

(964 or 965)
SQL TYPE IS CLOB_LOCATOR Identifies CLOB entities residing on the

server

CLOB file reference variable4

(920 or 921)
SQL TYPE IS CLOB_FILE Descriptor for file containing CLOB data

BLOB(n)
(404 or 405)

SQL TYPE IS BLOB(n) where n is
from 1 to 2 147 483 647

Large object variable-length binary string

BLOB locator variable4

(960 or 961)
SQL TYPE IS BLOB_LOCATOR Identifies BLOB entities on the server

BLOB file reference variable4

(916 or 917)
SQL TYPE IS BLOB_FILE Descriptor for the file containing BLOB data

Chapter 9. Programming in FORTRAN 251

Table 16. SQL Data Types Mapped to FORTRAN Declarations (continued)

SQL Column Type1 FORTRAN Data Type SQL Column Type Description

DATE
(384 or 385)

CHARACTER*10 10-byte character string

TIME
(388 or 389)

CHARACTER*8 8-byte character string

TIMESTAMP
(392 or 393)

CHARACTER*26 26-byte character string

Notes:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second
number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,
or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the
SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

The following is an additional rule for supported FORTRAN data types:
v You may define dynamic SQL statements longer than 254 characters by

using VARCHAR, LONG VARCHAR, OR CLOB host variables.

Related concepts:

v “SQL Declare Section with Host Variables for FORTRAN” on page 250

Considerations for Multi-Byte Character Sets in FORTRAN

There are no graphic (multi-byte) host variable data types supported in
FORTRAN. Only mixed-character host variables are supported through the
character data type. It is possible to create a user SQLDA that contains
graphic data.

Japanese or Traditional Chinese EUC, and UCS-2 Considerations for FORTRAN

Any graphic data sent from your application running under an eucJp or
eucTW code set, or connected to a UCS-2 database, is tagged with the UCS-2
code page identifier. Your application must convert a graphic-character string
to UCS-2 before sending it to a the database server. Likewise, graphic data
retrieved from a UCS-2 database by any application, or from any database by
an application running under an EUC eucJP or eucTW code page, is encoded

252 Programming Client Applications

using UCS-2. This requires your application to convert from UCS-2 to your
application code page internally, unless the user is to be presented with UCS-2
data.

Your application is responsible for converting to and from UCS-2 because this
conversion must be conducted before the data is copied to, and after it is
copied from, the SQLDA. DB2 Universal Database does not supply any
conversion routines that are accessible to your application. Instead, you must
use the system calls available from your operating system. In the case of a
UCS-2 database, you may also consider using the VARCHAR and
VARGRAPHIC scalar functions.

Related concepts:

v “Japanese and Traditional Chinese EUC and UCS-2 Code Set
Considerations” on page 404

Related reference:

v “VARCHAR scalar function” in the SQL Reference, Volume 1

v “VARGRAPHIC scalar function” in the SQL Reference, Volume 1

SQLSTATE and SQLCODE Variables in FORTRAN

When using the LANGLEVEL precompile option with a value of SQL92E, the
following two declarations may be included as host variables:

EXEC SQL BEGIN DECLARE SECTION;
CHARACTER*5 SQLSTATE
INTEGER SQLCOD
.
.
.

EXEC SQL END DECLARE SECTION

If neither of these is specified, the SQLCOD declaration is assumed during the
precompile step. The variable named SQLSTATE may also be SQLSTA. Note that
when using this option, the INCLUDE SQLCA statement should not be
specified.

For applications that contain multiple source files, the declarations of SQLCOD
and SQLSTATE may be included in each source file, as shown above.

Related reference:

v “PRECOMPILE” in the Command Reference

Chapter 9. Programming in FORTRAN 253

254 Programming Client Applications

Part 3. Java

© Copyright IBM Corp. 1993-2002 255

256 Programming Client Applications

Chapter 10. Programming in Java

Programming Considerations for Java . . . 257
JDBC and SQLj 258

Comparison of SQLj to JDBC 258
JDBC and SQLj Interoperability 258
Session Sharing Between JDBC and SQLj 258

Advantages of Java over Other Languages 259
SQL Security in Java 259
Connection Resource Management in Java 260
Source and Output Files for Java. 261
Java Class Libraries 261
Where to Put Java Classes 261
Updating Java Classes for Runtime 263
Java Packages 263
Host Variables in Java 263
Supported SQL Data Types in Java 264
Java Enablement Components. 265
Application and Applet Support 266

Application Support in Java with the
Type 2 Driver 266
Application and Applet Support in Java
with the Type 4 Driver 266
Applet Support in Java Using the Type 3
Driver 267

JDBC Programming 268
Coding JDBC Applications and Applets 268
JDBC Specification 268
Example of a JDBC Program 269
Distribution of JDBC Applications Using
the Type 2 Driver 270
Distribution and Running of Type 4
Driver JDBC Applets. 271

Exceptions Caused by Mismatched
db2java.zip Files When Using the JDBC
Type 3 Driver 271
JDBC 2.1 272
JDBC 2.1 Core API Restrictions by the
DB2 JDBC Type 2 Driver 272
JDBC 2.1 Core API Restrictions by the
DB2 JDBC Type 4 Driver 273
JDBC 2.1 Optional Package API Support
by the DB2 JDBC Type 2 Driver 273
JDBC 2.1 Optional Package API Support
by the DB2 JDBC Type 4 Driver 275

SQLj Programming 275
SQLj Programming 275
DB2 Support for SQLj 276
DB2 Restrictions on SQLj 277
Embedded SQL Statements in Java . . . 278
Iterator Declarations and Behavior in
SQLj 279
Example of Iterators in an SQLj Program 280
Calls to Routines in SQLj 281
Example of Compiling and Running an
SQLj Program 282
SQLj Translator Options. 284

Troubleshooting Java Applications 285
Trace Facilities in Java 285
CLI/ODBC/JDBC Trace Facility 285
CLI and JDBC Trace Files 294
SQLSTATE and SQLCODE Values in Java 304

Programming Considerations for Java

DB2 Universal Database implements two standards-based Java™ programming
APIs: Java Database Connectivity (JDBC) and embedded SQL for Java (SQLj).
This chapter provides an overview of JDBC and SQLj programming, but
focuses on the aspects specific to DB2. See the DB2 Universal Database Java
Web site for links to the JDBC and SQLj specifications.

Related reference:

v “JDBC Samples” in the Application Development Guide: Building and Running
Applications

© Copyright IBM Corp. 1993-2002 257

v “SQLJ Samples” in the Application Development Guide: Building and Running
Applications

JDBC and SQLj

The following sections compare JDBC and SQLj, and describe interoperability
and session sharing between JDBC and SQLj.

Comparison of SQLj to JDBC

The JDBC API allows you to write Java™ programs that make dynamic SQL
calls to databases. SQLj applications use JDBC as a foundation for such tasks
as connecting to databases and handling SQL errors, but can also contain
embedded static SQL statements in the SQLj source files. You must translate
an SQLj source file with the SQLj translator before you can compile the
resulting Java source code.

JDBC and SQLj Interoperability

The SQLj language provides direct support for static SQL operations that are
known at the time the program is written. If some or all of a particular SQL
statement cannot be determined until run time, it is a dynamic operation. To
perform dynamic SQL operations from an SQLj program, use JDBC. A
ConnectionContext object contains a JDBC Connection object, which can be
used to create JDBC Statement objects needed for dynamic SQL operations.

Every SQLj ConnectionContext class includes a constructor that takes as an
argument a JDBC Connection. This constructor is used to create an SQLj
connection context instance that shares its underlying database connection
with that of the JDBC connection.

Every SQLj ConnectionContext instance has a getConnection() method that
returns a JDBC Connection instance. The JDBC Connection returned shares
the underlying database connection with the SQLj connection context. It may
be used to perform dynamic SQL operations as described in the JDBC API.

Related concepts:

v “Session Sharing Between JDBC and SQLj” on page 258
v “Connection Resource Management in Java” on page 260

Session Sharing Between JDBC and SQLj

The interoperability methods between JDBC and SQLj provide a conversion
between the connection abstractions used in SQLj and those used in JDBC.
Both abstractions share the same database session; that is, the underlying
database connection. Accordingly, calls to methods that affect the session state

258 Programming Client Applications

on one object will also be reflected in the other object, as it is actually the
underlying shared session that is being affected.

JDBC defines the default values for the session state of newly created
connections. In most cases, SQLj adopts these default values. However,
whereas a newly created JDBC connection has auto commit mode on by
default, an SQLj connection context requires the auto commit mode to be
specified explicitly upon construction.

Related concepts:

v “JDBC and SQLj Interoperability” on page 258
v “Connection Resource Management in Java” on page 260

Advantages of Java over Other Languages

Programming languages containing embedded SQL are called host languages.
Java™ differs from the traditional host languages C, COBOL, and FORTRAN,
in ways that significantly affect how it embeds SQL:
v SQLj and JDBC are open standards, enabling you to easily port SQLj or

JDBC applications from other standards-compliant database systems to DB2
Universal Database.

v All Java types representing composite data, and data of varying sizes, have
a distinguishing value, null, which can be used to represent the SQL NULL
state, giving Java programs an alternative to NULL indicators that are a
fixture of other host languages.

v Java is designed to support programs that are automatically
heterogeneously portable (also called ″super portable″ or simply
″downloadable″). Along with Java’s type system of classes and interfaces,
this feature enables component software. In particular, an SQLj translator
written in Java can call components that are specialized by database
vendors in order to leverage existing database functions such as
authorization, schema checking, type checking, transactional, and recovery
capabilities, and to generate code optimized for specific databases.

v Java is designed for binary portability in heterogeneous networks, which
promises to enable binary portability for database applications that use
static SQL.

SQL Security in Java

By default, a JDBC program executes SQL statements with the privileges
assigned to the person who runs the program. In contrast, an SQLj program
executes SQL statements with the privileges assigned to the person who
created the database package.

Chapter 10. Programming in Java 259

Connection Resource Management in Java

Calling the close() method of a connection context instance causes the
associated JDBC connection instance and the underlying database connection
to be closed. Because connection contexts may share the underlying database
connection with other connection contexts and/or JDBC connections, it may
not be desirable to close the underlying database connection when a
connection context is closed. A programmer may want to release the resources
maintained by the connection context (for example, statement handles),
without actually closing the underlying database connection. To this end,
connection context classes also support a close() method, which takes a
Boolean argument indicating whether or not to close the underlying database
connection: the constant CLOSE_CONNECTION if the database connection should
be closed, and KEEP_CONNECTION if it should be retained. The variant of
close() that takes no arguments is a shorthand for calling
close(CLOSE_CONNECTION).

If a connection context instance is not explicitly closed before it is garbage
collected, close(KEEP_CONNECTION) is called by the finalize method of the
connection context. This allows connection-related resources to be reclaimed
by the normal garbage collection process while maintaining the underlying
database connection for other JDBC and SQLj objects that may be using it.
Note that if no other JDBC or SQLj objects are using the connection, the
database connection is closed and reclaimed by the garbage collection process.

Both SQLj connection context objects and JDBC connection objects respond to
the close() method. When writing an SQLj program, it is sufficient to call the
close() method on only the connection context object: closing the connection
context also closes the JDBC connection associated with it. However, it is not
sufficient to close only the JDBC connection returned by the getConnection()
method of a connection context: the close() method of a JDBC connection
does not cause the containing connection context to be closed, and therefore
resources maintained by the connection context are not released until it is
garbage collected.

The isClosed() method of a connection context returns true if any variant of
the close() method has been called on the connection context instance. If
isClosed() returns true, calling close() has no effect, and calling any other
method is undefined.

Related concepts:

v “JDBC and SQLj Interoperability” on page 258
v “Session Sharing Between JDBC and SQLj” on page 258

260 Programming Client Applications

Source and Output Files for Java

Source files have the following extensions:

.java Java™ source files, which require no precompiling. You can compile
these files with the javac Java compiler included with your Java
development environment.

.sqlj SQLj source files, which require translation with the sqlj translator.
The translator creates:
v One or more .class bytecode files
v One .ser profile file per connection context

The corresponding output files have the following extensions:

.class JDBC and SQLj bytecode compiled files.

.ser SQLj serialized profile files. You create packages in the database for
each profile file with the db2profc utility.

Java Class Libraries

DB2 Universal Database provides class libraries for JDBC and SQLj support,
which you must provide in your CLASSPATH or include with your applets as
follows:

db2jcc.jar
Provides the JDBC Type 4 driver.

db2java.zip
Provides the JDBC driver and JDBC and SQLj support classes,
including stored procedure and UDF support.

sqlj.zip
Provides the SQLj translator class files.

runtime.zip
Provides Java™ run-time support for SQLj applications and applets.

Where to Put Java Classes

You can use individual Java™ class files for your stored procedures and UDFs,
or collect the class files into JAR files and install the JAR file in the database.
If you decide to use JAR files, see the description of registering Java functions
and stored procedures for more information.

Note: If you update or replace Java routine class files, you must issue a CALL
SQLJ.REFRESH_CLASSES() statement to enable DB2® to load the

Chapter 10. Programming in Java 261

updated classes. For more information on the CALL
SQLJ.REFRESH_CLASSES() statement, see the description of how to
update Java classes for routines.

To enable DB2 to find and use your stored procedures and UDFs, you must
store the corresponding class files in the function directory, which is a directory
defined for your operating system as follows:

Unix operating systems
sqllib/function

Windows® operating systems
instance_name\function, where instance_name represents the value of
the DB2INSTPROF instance-specific registry setting.

For example, the function directory for a Windows NT® server with
DB2 installed in the C:\sqllib directory, and with no specified
DB2INSTPROF registry setting, is:

C:\sqllib\function

If you decide to use individual class files, you must store the class files in the
appropriate directory for your operating system. If you declare a class to be
part of a Java package, create the corresponding subdirectories in the function
directory and place the files in the corresponding subdirectory. For example, if
you create a class ibm.tests.test1 for a Linux system, store the
corresponding Java bytecode file (named test1.class) in
sqllib/function/ibm/tests.

The JVM that DB2 invokes uses the CLASSPATH environment variable to
locate Java files. DB2 adds the function directory and sqllib/java/db2java.zip
to the front of your CLASSPATH setting.

To set your environment so that the JVM can find the Java class files, you may
need to set the jdk_path configuration parameter, or else use the default value.
Also, you may need to set the java_heap_sz configuration parameter to increase
the heap size for your application.

Related tasks:

v “Updating Java Classes for Runtime” on page 263

Related reference:

v “Maximum Java Interpreter Heap Size configuration parameter -
java_heap_sz” in the Administration Guide: Performance

v “Java Development Kit Installation Path configuration parameter -
jdk_path” in the Administration Guide: Performance

262 Programming Client Applications

Updating Java Classes for Runtime

Procedure:

When you update Java routine classes, you must also issue a CALL
SQLJ.REFRESH_CLASSES() statement to force DB2 to load the new classes. If
you do not issue the CALL SQLJ.REFRESH_CLASSES() statement after you
update Java routine classes, DB2 continues to use the previous versions of the
classes. The CALL SQLJ.REFRESH_CLASSES() statement only applies to
FENCED routines. DB2 refreshes the classes when a COMMIT or ROLLBACK
occurs.

Note: You cannot update NOT FENCED routines without stopping and
restarting the database manager.

Java Packages

To use the class libraries included with DB2 in your own applications, you
must include the appropriate import package statements at the top of your
source files. You can use the following packages in your Java™ applications:

java.sql.*
The JDBC API included in your JDK. You must import this package in
every JDBC and SQLj program.

sqlj.runtime.*
SQLj support included with every DB2® client. You must import this
package in every SQLj program.

sqlj.runtime.ref.*
SQLj support included with every DB2 client. You must import this
package in every SQLj program.

Host Variables in Java

Arguments to embedded SQL statements are passed through host variables,
which are variables of the host language that appear in the SQL statement.
Host variables have up to three parts:
v A colon prefix, :
v An optional parameter mode identifier: IN, OUT, or INOUT
v A Java™ host variable that is a Java identifier for a parameter, variable, or

field

Chapter 10. Programming in Java 263

The evaluation of a Java identifier does not have side effects in a Java
program, so it may appear multiple times in the Java code generated to
replace an SQLj clause.

The following query contains the host variable, :x, which is the Java variable,
field, or parameter x visible in the scope containing the query:

SELECT COL1, COL2 FROM TABLE1 WHERE :x > COL3

All host variables specified in compound SQL are input host variables by
default. You have to specify the parameter mode identifier OUT or INOUT
before the host variable to mark it as an output host variable. For example:

#sql {begin compound atomic static
select count(*) into :OUT count1 from employee;
end compound}

Supported SQL Data Types in Java

The following table shows the Java equivalent of each SQL data type, based
on the JDBC specification for data type mappings. The JDBC driver converts
the data exchanged between the application and the database using the
following mapping schema. Use these mappings in your Java applications and
your PARAMETER STYLE JAVA procedures and UDFs.

Note: There is no host variable support for the DATALINK data type in any
of the programming languages supported by DB2.

Table 17. SQL Data Types Mapped to Java Declarations

SQL Column Type Java Data Type SQL Column Type Description

SMALLINT
(500 or 501)

short 16-bit, signed integer

INTEGER
(496 or 497)

int 32-bit, signed integer

BIGINT
(492 or 493)

long 64-bit, signed integer

REAL
(480 or 481)

float Single precision floating point

DOUBLE
(480 or 481)

double Double precision floating point

DECIMAL(p,s)
(484 or 485)

java.math.BigDecimal Packed decimal

CHAR(n)
(452 or 453)

java.lang.String Fixed-length character string of length n
where n is from 1 to 254

264 Programming Client Applications

Table 17. SQL Data Types Mapped to Java Declarations (continued)

SQL Column Type Java Data Type SQL Column Type Description

CHAR(n)
FOR BIT DATA

byte[] Fixed-length character string of length n
where n is from 1 to 254

VARCHAR(n)
(448 or 449)

java.lang.String Variable-length character string

VARCHAR(n)
FOR BIT DATA

byte[] Variable-length character string

LONG VARCHAR
(456 or 457)

java.lang.String Long variable-length character string

LONG VARCHAR
FOR BIT DATA

byte[] Long variable-length character string

BLOB(n)
(404 or 405)

java.sql.Blob Large object variable-length binary string

CLOB(n)
(408 or 409)

java.sql.Clob Large object variable-length character string

DBCLOB(n)
(412 or 413)

java.sql.Clob Large object variable-length double-byte
character string

DATE
(384 or 385)

java.sql.Date 10-byte character string

TIME
(388 or 389)

java.sql.Time 8-byte character string

TIMESTAMP
(392 or 393)

java.sql.Timestamp 26-byte character string

Java Enablement Components

DB2’s Java™ enablement has three independent components:
v Support for client applications and applets written in Java using JDBC to

access DB2
v Precompile and binding support for client applications and applets written

in Java using SQLj to access DB2
v Support for Java UDFs and stored procedures on the server

Related concepts:

v “SQLj Programming” on page 275

Related tasks:

v “Coding JDBC Applications and Applets” on page 268

Chapter 10. Programming in Java 265

Application and Applet Support

The sections that follow describe the application and applet support that is
provided by the different JDBC drivers.

Application Support in Java with the Type 2 Driver

The following figure shows how a type 2 JDBC application works with DB2.
Calls to JDBC are translated to calls to DB2® through Java™ native methods.
JDBC requests flow from the DB2 client to the DB2 server.

SQLj applications use this JDBC support, and in addition require the SQLj
run-time classes to authenticate and execute any SQL packages that were
bound to the database at the precompiling and binding stage.

Application and Applet Support in Java with the Type 4 Driver

The following figure shows how a type 4 DB2® JDBC application or applet
works. The type 4 application or applet communicates directly with the
database.

SQLJ
Application

SQLJ
Run-Time Classes

Java
Application JDBC DB2 Client

Remote
Database

Figure 4. Application Support with the Type 2 Driver

266 Programming Client Applications

Applet Support in Java Using the Type 3 Driver

The following figure shows how the JDBC applet driver, also known as the net
driver, works with the JDBC type 3 driver. The type 3 driver consists of a
JDBC client and a JDBC server, db2jd. The JDBC client driver is loaded on the
Web browser along with the applet. When the applet requests a connection to
a DB2 database, the client opens a TCP/IP socket to the JDBC server on the
machine where the Web server is running. After a connection is set up, the
client sends each of the subsequent database access requests from the applet
to the JDBC server though the TCP/IP connection. The JDBC server then
makes corresponding CLI (ODBC) calls to perform the task. Upon completion,
the JDBC server sends the results back to the client through the connection.

SQLj applets add the SQLj client driver on top of the JDBC client driver, but
otherwise work the same as JDBC applets.

Remote
Database

Java
Application

Java Applet

Figure 5. Application and Applet Support with the Type 4 Driver

SQLJ Applet

Remote DB2
Database

Web Browser Web Server Host

SQLJ Run-Time
Classes

Java/
JDBC
Applet

JDBC
Client

HTTPd

JDBC Server

CLI

Local DB2
Database

TCP/IP
Socket

HTTP

Figure 6. DB2® Java™ Applet Implementation with the JDBC Type 3 Driver

Chapter 10. Programming in Java 267

Use the db2jstrt command to start the DB2 JDBC server.

JDBC Programming

The sections that follow describe how to create JDBC applications.

Coding JDBC Applications and Applets

JDBC applications and applets typically follow similar program logic.

Procedure:

When you code a JDBC application or applet, you will typically code them to
perform the following tasks:
1. Import the appropriate Java packages and classes (java.sql.*).
2. Load the appropriate JDBC driver:

v For type 2 JDBC, COM.ibm.db2.jdbc.app.DB2Driver for applications
v For type 3 JDBC, COM.ibm.db2.jdbc.net.DB2Driver for applets.

Note: The type 3 driver is deprecated in Version 8.
v For type 4 JDBC, com.ibm.db2.jcc.DB2Driver for both applications and

applets.
3. Connect to the database, specifying the location with a URL as defined in

the JDBC specification and using the db2 subprotocol.
The type 3 and 4 drivers require you to provide the user ID, password,
host name and a port number. For the type 3 driver, the port number is
the applet server port number. For the Type 4 driver the port number is
the DB2 server port number. The type 2 driver implicitly uses the default
value for user ID and password from the DB2 client catalog, unless you
explicitly specify alternative values.

4. Pass SQL statements to the database.
5. Receive the results.
6. Close the connection.

After coding your program, compile it as you would any other Java program.
You don’t need to perform any special precompile or bind steps.

Related concepts:

v “Example of a JDBC Program” on page 269

JDBC Specification

Whether your application or applet uses JDBC or SQLj, you need to
familiarize yourself with the JDBC specification, which is available from Sun

268 Programming Client Applications

Microsystems. See the DB2 Java™ Web site for links to JDBC and SQLj
resources. This specification describes how to call JDBC APIs to access a
database and manipulate data in that database.

Related concepts:

v “Java Enablement Components” on page 265
v “JDBC 2.1” on page 272

Example of a JDBC Program

Every JDBC program must perform the following steps:
1. Import the JDBC package.

Every JDBC and SQLj program must import the JDBC package.
2. Declare a Connection object.

The Connection object establishes and manages the database connection.
3. Set the database URL variable.

The DB2 application driver accepts URLs that take the form of:
jdbc:db2:database-name

4. Connect to the database.
The DriverManager.getConnection() method is most often used with the
following parameters:
v getConnection(String url), which establishes a connection to the

database specified by a URL, and uses the default user ID and
password.

v getConnection(String url, String userid, String password), which
establishes a connection to the database specified by a URL, and uses
the user ID and password that are specified by userid and password
respectively.

Note: All JDBC sample programs use the Db class defined in the Util.java
program to perform the connection. You can reuse the Db class in
the Util.java program to connect to a database. See the JDBC
sample programs for more information.

The JDBC sample TutMod.java shows some basic database modifications use
include INSERT, UPDATE, and DELETE statements. Another JDBC sample,
TbMod.java, is a more comprehensive sample that shows how to insert,
update, and delete table data. This sample shows many possible ways to
modify table data.

Example of an INSERT Statement
Statement stmt = con.createStatement();
stmt.executeUpdate(

"INSERT INTO staff(id, name, dept, job, salary) " +

Chapter 10. Programming in Java 269

" VALUES (380, ’Pearce’, 38, ’Clerk’, 13217.50), "+
" (390, ’Hachey’, 38, ’Mgr’, 21270.00), " +
" (400, ’Wagland’, 38, ’Clerk’, 14575.00) ");

stmt.close();

Example of an UPDATE Statement
Statement stmt = con.createStatement();
stmt.executeUpdate(

"UPDATE staff " +
" SET salary = salary + 1000 " +
" WHERE id >= 310 AND dept = 84");

stmt.close();

Example of a DELETE Statement
Statement stmt = con.createStatement();
stmt.executeUpdate("DELETE FROM staff " +

" WHERE id >= 310 AND salary > 20000");
stmt.close();

Related samples:

v “TbMod.java -- How to modify table data (JDBC)”
v “TbMod.out -- HOW TO MODIFY TABLE DATA (JDBC)”
v “TutMod.java -- Modify data in a table (JDBC)”
v “TutMod.out -- HOW TO MODIFY DATA IN A TABLE (JDBC)”

Distribution of JDBC Applications Using the Type 2 Driver

Distribute your JDBC application as you would any other Java™ application.
As the application uses the DB2® client to communicate with the DB2 server,
you have no special security concerns; authority verification is performed by
the DB2 client.

To run your application on a client machine, you must install on that
machine:
v A Java Virtual Machine (JVM), which you need to run any Java code
v A DB2 client, which also includes the DB2 JDBC driver

To build your application, you must also install the JDK for your operating
system.

Related tasks:

v “Building JDBC Applications” in the Application Development Guide: Building
and Running Applications

270 Programming Client Applications

Distribution and Running of Type 4 Driver JDBC Applets

Like other Java™ applets, you distribute your JDBC applet over the network
(intranet or Internet). Typically you would embed the applet in a hypertext
markup language (HTML) page. For example, to call the sample applet
DB2Applt.java, (provided in sqllib/samples/java), you might use the
following <APPLET> tag:

<applet code="DB2Applt.class" width=325 height=275 archive="db2jcc.jar">
<param name="server" value="db_server">
<param name="port" value="50006">

</applet>

To run your applet, you need only a Java-enabled Web browser on the client
machine (that is, you do not need to install a DB2® client on the client
machine). When you load your HTML page, the applet tag instructs your
browser to download the Java applet and the db2jcc.jar class library, which
includes the DB2 JDBC driver implemented by the
com.ibm.db2.jcc.DB2Driver class. When your applet calls the JDBC API to
connect to DB2, the JDBC driver establishes separate communications with the
DB2 database through the JDBC applet server running on the Web server.

Note: To ensure that the Web browser downloads db2jcc.jar from the server,
ensure that the CLASSPATH environment variable on the client does
not include db2jcc.jar. Your applet may not function correctly if the
client uses a local version of db2jcc.jar.

Related tasks:

v “Building JDBC Applets” in the Application Development Guide: Building and
Running Applications

Exceptions Caused by Mismatched db2java.zip Files When Using the
JDBC Type 3 Driver

If you are using the type 3 JDBC driver, it is essential that the db2java.zip file
used by the Java™ applet be at the same FixPak level as the JDBC applet
server. Under normal circumstances, db2java.zip is loaded from the Web
Server where the JDBC applet server is running. This ensures a match. If,
however, your configuration has the Java applet loading db2java.zip from a
different location, a mismatch can occur. Prior to DB2® Version 7.1 FixPak 2,
this could lead to unexpected failures. As of DB2 Version 7.1 FixPak 2,
matching FixPak levels between the two files is strictly enforced at connection
time. If a mismatch is detected, the connection is rejected, and the client
receives one of the following exceptions:
v If db2java.zip is at DB2 Version 7.1 FixPak 2 or later:

COM.ibm.db2.jdbc.DB2Exception: [IBM][JDBC Driver]
CLI0621E Unsupported JDBC server configuration.

Chapter 10. Programming in Java 271

v If db2java.zip is prior to DB2 Version 7.1 FixPak 2:
COM.ibm.db2.jdbc.DB2Exception: [IBM][JDBC Driver]
CLI0601E Invalid statement handle or statement is closed.
SQLSTATE=S1000

If a mismatch occurs, the JDBC applet server logs one of the following
messages in the jdbcerr.log file:
v If the JDBC applet server is at DB2 Version 7.1 FixPak 2 or later:

jdbcFSQLConnect: JDBC Applet Server and client (db2java.zip)
versions do not match. Unable to proceed with connection., einfo= -111

v If the JDBC applet server is prior to DB2 Version 7.1 FixPak 2:
jdbcServiceConnection(): Invalid Request Received., einfo= 0

Note: Because the type 4 driver has no JDBC server component, the type of
mismatch described above cannot occur. It is recommended that you
modify your applications to use the type 4 driver.

JDBC 2.1

JDBC Version 2.1 from Sun has two defined parts: the core API, and the
Optional Package API. For information on the JDBC specification, see the
DB2 Universal Database Java™ Web site.

Related concepts:

v “JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 2 Driver” on page
272

v “JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 2 Driver”
on page 273

v “JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 4 Driver” on page
273

v “JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 4 Driver”
on page 275

Related tasks:

v “Setting Up the Java Environment” in the Application Development Guide:
Building and Running Applications

JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 2 Driver

The DB2 type 2 JDBC driver supports the JDBC 2.1 core API, however, it does
not support all of the features defined in the specification. The DB2 JDBC
driver does not support the following features:
v Updatable ResultSets
v New SQL types (Array, Ref, Java Object, Struct)
v Customized SQL type mapping

272 Programming Client Applications

v Scrollable sensitive ResultSets (scroll type of
ResultSet.TYPE_SCROLL_SENSITIVE)

Related concepts:

v “JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 2 Driver”
on page 273

JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 4 Driver

The DB2 type 4 JDBC driver supports the JDBC 2.1 core API, however, it does
not support all of the features defined in the specification. The DB2 JDBC
driver does not support the following features:
v Updatable ResultSets
v New SQL types (Array, Ref, Java Object, Struct)
v Customized SQL type mapping

JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 2 Driver

The DB2 JDBC type 2 driver supports the following features of the JDBC 2.1
Optional Package API:
v Java™ Naming and Directory Interface (JNDI) for Naming Databases

DB2® provides the following support for the Javing Naming and Directory
Interface (JNDI) for naming databases:

javax.naming.Context
This interface is implemented by COM.ibm.db2.jndi.DB2Context,
which handles the storage and retrieval of DataSource objects. To
support persistent associations of logical data source names to
physical database information, such as database names, these
associations are saved in a file named .db2.jndi. For an application,
the file resides (or is created if none exists) in the directory specified
by the USER.HOME environment variable. For an applet, you must
create this file in the root directory of the web server to facilitate
the lookup() operation. Applets do not support the bind(),
rebind(), unbind() and rename() methods of this class. Only
applications can bind DataSource objects to JNDI.

javax.sql.DataSource
This interface is implemented by COM.ibm.db2.jdbc.DB2DataSource.
You can save an object of this class in any implementation of
javax.naming.Context. This class also makes use of connection
pooling support.

DB2DataSource supports the following methods:
– public void setDatabaseName(String databaseName)
– public void setServerName(String serverName)
– public void setPortNumber(int portNumber)

Chapter 10. Programming in Java 273

javax.naming.InitialContextFactory
This interface is implemented by
COM.ibm.db2.jndi.DB2InitialContextFactory, which creates an
instance of DB2Context. Applications automatically set the value of
the JAVA.NAMING.FACTORY.INITIAL environment variable to
COM.ibm.db2.jndi.DB2InitialContextFactory To use this class in an
applet, call InitialContext() using the following syntax:

Hashtable env = new Hashtable(5);
env.put("java.naming.factory.initial",

"COM.ibm.db2.jndi.DB2InitialContextFactory");
Context ctx = new InitialContext(env);

v Connection Pooling
DB2ConnectionPoolDataSource and DB2PooledConnection provide the hooks
necessary for you to implement your own connection pooling module, as
follows:

javax.sql.ConnectionPoolDataSource
This interface is implemented by
COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource, and is a factory of
COM.ibm.db2.jdbc.DB2PooledConnection objects.

javax.sql.PooledConnection
This interface is implemented by
COM.ibm.db2.jdbc.DB2PooledConnection.

v Java Transaction APIs (JTA)
DB2 supports the Java Transaction APIs (JTA) through the DB2 JDBC type 2
driver. DB2 does not provide JTA support with the DB2 JDBC type 3 or
type 4 drivers.

javax.sql.XAConnection
This interface is implemented by
COM.ibm.db2.jdbc.DB2XAConnection.

javax.sql.XADataSource
This interface is implemented by
COM.ibm.db2.jdbc.DB2XADataSource, and is a factory of
COM.ibm.db2.jdbc.DB2PooledConnection objects.

javax.transactions.xa.XAResource
This interface is implemented by
COM.ibm.db2.jdbc.app.DBXAResource.

javax.transactions.xa.Xid
This interface is implemented by COM.ibm.db2.jdbc.DB2Xid.

Related concepts:

v “JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 2 Driver” on page
272

274 Programming Client Applications

JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 4 Driver

The DB2 JDBC type 4 driver supports the following features of the JDBC 2.1
Optional Package API:
v Java™ Naming and Directory Interface (JNDI) for Naming Databases

DB2® provides the following support for the Javing Naming and Directory
Interface (JNDI) for naming databases:

javax.sql.DataSource
This interface is implemented by
com.ibm.db2.jcc.DB2SimpleDataSource. You can save an object of
this class in any implementation of javax.naming.Context.

DB2SimpleDataSource supports the following methods:
– public void setDatabaseName(String databaseName)
– public void setServerName(String serverName)
– public void setPortNumber(int portNumber)
– public void setDescription(String description)
– public void setLoginTimeout(int seconds)
– public void setLogWriter(java.io.PrintWriter logWriter)
– public void setPassword(String password)
– public void setUser(String user)
– public void setDriverType(int driverType)

Note: The only type currently supported is 4; this type must be
set explicitly by the application following the construction
of a new DB2SimpleDataSource.

SQLj Programming

The sections that follow describe how to create SQLj applications.

SQLj Programming

DB2® SQLj support is based on the SQLj ANSI standard. Refer to the DB2
Java™ Web site for a pointer to the ANSI Web site and other SQLj resources.
The sections that follow provide an overview of SQLj programming and
information that is specific to DB2 SQLj support.

The following kinds of SQL constructs may appear in SQLj programs:
v Queries; for example, SELECT statements and expressions
v SQL Data Change Statements (DML); for example, INSERT, UPDATE,

DELETE
v Data Statements; for example, FETCH, SELECT..INTO
v Transaction Control; for example, COMMIT, ROLLBACK, and so on

Chapter 10. Programming in Java 275

v Data Definition Language (DDL, also known as Schema Manipulation
Language); for example, CREATE, DROP, ALTER

v Calls to stored procedures; for example, CALL MYPROC(:x, :y, :z)
v Invocations of functions; for example, VALUES(MYFUN(:x))

Related concepts:

v “DB2 Support for SQLj” on page 276
v “DB2 Restrictions on SQLj” on page 277

DB2 Support for SQLj
DB2® SQLj support is provided by the DB2 Application Development Client.
Along with the JDBC support provided by the DB2 client, DB2 SQLj support
allows you to create, build, and run embedded SQL for Java™ applications,
applets, stored procedures and user-defined functions (UDFs). These contain
static SQL and use embedded SQL statements that are bound to a DB2
database.

The SQLj support provided by the DB2 Application Development Client
includes:
v The SQLj translator, sqlj, which replaces embedded SQL statements in the

SQLj program with Java source statements and generates a serialized profile
containing information about the SQL operations found in the SQLj
program. The SQLj translator uses the sqllib/java/sqlj.zip file.

v The SQLj run-time classes, available in sqllib/java/runtime.zip.
v The DB2 SQLj profile customizer, db2profc, which precompiles the SQL

statements stored in the generated profile and generates a package in the
DB2 database.

v The DB2 SQLj profile printer, db2profp, which prints the contents of a DB2
customized profile in plain text.

v The SQLj profile auditor installer, profdb, which installs (or uninstalls)
debugging class-auditors into an existing set of binary profiles. Once
installed, all RTStatement and RTResultSet calls made during application
run time are logged to a file (or standard output), which can then be
inspected to verify expected behavior and trace errors. Note that only those
calls made to the underlying RTStatement and RTResultSet call interface at
run time are audited.

v The SQLj profile conversion tool, profconv, which converts a serialized
profile instance to class bytecode format. Some browsers do not yet have
support for loading a serialized object from a resource file associated with
the applet. As a work-around, you need to run this utility to perform the
conversion.

For more information on the SQLj run-time classes, refer to the DB2 Java Web
site.

276 Programming Client Applications

Related concepts:

v “DB2 Restrictions on SQLj” on page 277

Related reference:

v “db2profc - DB2 SQLj Profile Customizer” in the Command Reference

v “db2profp - DB2 SQLj Profile Printer” in the Command Reference

DB2 Restrictions on SQLj

When you create DB2 applications with SQLj, you should be aware of the
following restrictions:
v DB2® SQLj support adheres to standard DB2 Universal Database restrictions

on issuing SQL statements.
v A positioned UPDATE and DELETE statement is not a valid sub-statement

in a Compound SQL statement.
v The precompile option ″DATETIME″ is not supported. Only the date and

time formats of the International Standards Organization are supported.
v The precompile option ″PACKAGE USING package-name″ specifies the

name of the package that is to be generated by the translator. If a name is
not entered, the name of the profile (minus extension and folded to
uppercase) is used. Maximum length is 8 characters. Since the SQLj profile
name has the suffix _SJProfileN, where N is the profile key number, the
profile name will always be longer than 8 characters. The default package
name will be constructed by concatenating the first (8 - pfKeyNumLen)
characters of the profile number and the profile key number, where
pfKeyNumLen is the length of the profile key number in the profile name. If
the length of the profile key number is longer than 7, the last 7 digits will
be used without any warnings. For example:

profile name default package name
--------------------- --------------------
App_SJProfile1 App_SJP1
App_SJProfile123 App_S123
App_SJProfile1234567 A1234567
App_SJProfile12345678 A2345678

v When a java.math.BigDecimal host variable is used, the precision and scale
of the host variable is not available during the translation of the
application. If the precision and scale of the decimal host variable is not
obvious from the context of the statement in which it is used, the precision
and scale can be specified using a CAST.

v A Java™ variable with type java.math.BigInteger cannot be used as a host
variable in an SQL statement.

Some browsers do not yet have support for loading a serialized object from a
resource file associated with the applet. You will get the following error
message when trying to load the applet Applt in those browsers:

Chapter 10. Programming in Java 277

java.lang.ClassNotFoundException: Applt_SJProfile0

As a work-around, there is a utility which converts a serialized profile into a
profile stored in Java class format. The utility is a Java class called
sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized profile
resource file as input and produces a Java class containing the profile as
output. Your profile can be converted using the following command:

profconv Applt_SJProfile0.ser

or
java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all profiles in
.ser format used by the applet with profiles in .class format.

For an SQLj applet, you need both db2java.zip and runtime.zip files. If you
choose not to package all your applet classes, classes in db2java.zip and
runtime.zip into a single Jar file, put both db2java.zip and runtime.zip
(separated by a comma) into the archive parameter in the ″applet″ tag. For
those browsers that do not support multiple zip files in the archive tag,
specify db2java.zip in the archive tag, and unzip runtime.zip with your
applet classes in a working directory that is accessible to your web browser.

Embedded SQL Statements in Java

Static SQL statements in SQLj appear in SQLj clauses. SQLj clauses are the
mechanism by which SQL statements in Java™ programs are communicated to
the database.

The SQLj translator recognizes SQLj clauses and SQL statements because of
their structure, as follows:
v SQLj clauses begin with the token #sql

v SQLj clauses end with a semicolon

The simplest SQLj clauses are executable clauses and consist of the token #sql
followed by an SQL statement enclosed in braces. For example, the following
SQLj clause may appear wherever a Java statement may legally appear. Its
purpose is to delete all rows in the table named TAB:

#sql { DELETE FROM TAB };

In an SQLj executable clause, the tokens that appear inside the braces are SQL
tokens, except for the host variables. All host variables are distinguished by
the colon character so the translator can identify them. SQL tokens never
occur outside the braces of an SQLj executable clause. For example, the

278 Programming Client Applications

following Java method inserts its arguments into an SQL table. The method
body consists of an SQLj executable clause containing the host variables x, y,
and z:

void m (int x, String y, float z) throws SQLException
{

#sql { INSERT INTO TAB1 VALUES (:x, :y, :z) };
}

Do not intitialize static SQL statements in a loop. One physical statement must
exist for each static SQL statement. For example, replace:

for(int i=0; i<2; i++){
#sql [ctx] itr[i] = { SELECT id, name FROM staff };

}

with the following:
int i=0;
#sql [ctx] itr[i] = { SELECT id, name FROM staff };
i=1;
#sql [ctx] itr[i] = { SELECT id, name FROM staff };

In general, SQL tokens are case insensitive (except for identifiers delimited by
double quotation marks), and can be written in upper, lower, or mixed case.
Java tokens, however, are case sensitive. For clarity in examples, case
insensitive SQL tokens are uppercase, and Java tokens are lowercase or mixed
case. The lowercase null is used to represent the Java null value, and the
uppercase NULL to represent the SQL null value.

Related concepts:

v “Iterator Declarations and Behavior in SQLj” on page 279

Iterator Declarations and Behavior in SQLj

Unlike SQL statements that retrieve data from a table, applications that
perform positioned UPDATE and DELETE operations, or that use iterators
with holdability or returnability attributes, require two Java™ source files.
Declare the iterator as public in one source file, appending the with and
implements clause as appropriate.

To set the value of the holdability or returnability attribute, you must
declare the iterator using the with clause for the corresponding attribute. The
following example sets the holdability attribute to true for the iterator
WithHoldCurs:

#sql public iterator WithHoldCurs with (holdability=true) (String EmpNo);

Iterators that perform positioned updates require an implements clause that
implements the sqlj.runtime.ForUpdate interface. For example, suppose that
you declare iterator DelByName like this in file1.sqlj:

Chapter 10. Programming in Java 279

#sql public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo);

You can then use the translated and compiled iterator in a different source
file. To use the iterator:
1. Declare an instance of the generated iterator class
2. Assign the SELECT statement for the positioned UPDATE or DELETE to

the iterator instance
3. Execute positioned UPDATE or DELETE statements using the iterator

To use DelByName for a positioned DELETE in file2.sqlj, execute
statements like those in the following example:

{
DelByName deliter; // Declare object of DelByName class
String enum;

�1� #sql deliter = { SELECT EMPNO FROM EMP WHERE WORKDEPT=’D11’};
while (deliter.next())
{

�2� enum = deliter.EmpNo(); // Get value from result table
�3� #sql { DELETE WHERE CURRENT OF :deliter };

// Delete row where cursor is positioned
}

}

Notes:

1. This SQLj clause executes the SELECT statement, constructs an iterator
object that contains the result table for the SELECT statement, and assigns
the iterator object to variable deliter.

2. This statement positions the iterator to the next row to be deleted.
3. This SQLj clause performs the positioned DELETE.

Related concepts:

v “Example of Iterators in an SQLj Program” on page 280

Example of Iterators in an SQLj Program

The SQLj sample, TbRead.sqlj, uses static SQL to retrieve data from the
DEPARTMENT table of the DB2 sample database. This sample shows two
types of iterators:
v Named binding to columns

This iterator declares column data types and names, and returns the values
of the columns according to column name. The following example is
demonstrated by the selectUsingNamedBindingToColumns() function of the
TbRead.sqlj sample:
#sql iterator Named_Iterator(String deptnumb, String deptname);
Named_Iterator namedIter = null;

// declare a cursor

280 Programming Client Applications

#sql namedIter = {SELECT deptno as deptnumb, deptname
FROM department
WHERE admrdept = ’A00’};

// retrieve the values of the columns according to column name
while (namedIter.next())
{

System.out.println(namedIter.deptnumb() + ", "+ namedIter.deptname());
}

// close the cursor
namedIter.close();

v Positional binding to columns
This iterator declares column data types, and returns the values of the
columns by column position. The following example is demonstrated by the
selectUsingPositionalBindingToColumns() function of the TbRead.sqlj
sample:
#sql iterator Positioned_Iterator(String, String);
Positioned_Iterator posIter;
String deptnumb = "";
String deptname = "";

// delcare cursor
#sql posIter = {SELECT deptno as deptnumb, deptname

FROM department
WHERE admrdept = ’A00’};

// fetch the cursor
#sql {FETCH :posIter INTO :deptnumb, :deptname};

while (!posIter.endFetch())
{

System.out.println(deptnumb + ", " + deptname);
#sql {FETCH :posIter INTO :deptnumb, :deptname};

}

// close the cursor
posIter.close();

Related samples:

v “TbRead.out -- HOW TO READ TABLE DATA (SQLJ)”
v “TbRead.sqlj -- How to read table data (SQLj)”

Calls to Routines in SQLj

Databases may contain procedures, user-defined functions, and user-defined
methods. Procedures, user-defined functions, and user-defined methods are
named schema objects that execute in the database. An SQLj executable clause
appearing as a Java™ statement may call a procedure by means of a CALL
statement like the following:

Chapter 10. Programming in Java 281

#sql { CALL SOME_PROC(:INOUT myarg) };

Procedures may have IN, OUT, or INOUT parameters. In the above case, the
value of host variable myarg is changed by the execution of that clause. An
SQLj executable clause may call a function by means of the SQL VALUES
construct. For example, assume a function F that returns an integer. The
following example illustrates a call to that function that then assigns its result
to Java local variable x:

{
int x;
#sql x = { VALUES(F(34)) };

}

Related concepts:

v “References to Functions” in the Application Development Guide: Programming
Server Applications

v “Routine Names and Paths” in the Application Development Guide:
Programming Server Applications

v “References to Procedures” in the Application Development Guide:
Programming Server Applications

Related tasks:

v “Building SQLJ Routines” in the Application Development Guide: Building and
Running Applications

v “Invoking a Procedure” in the Application Development Guide: Programming
Server Applications

v “Invoking Routines” in the Application Development Guide: Programming
Server Applications

v “Invoking a UDF” in the Application Development Guide: Programming Server
Applications

v “Invoking a Table Function” in the Application Development Guide:
Programming Server Applications

Related reference:

v “SQLJ Samples” in the Application Development Guide: Building and Running
Applications

Example of Compiling and Running an SQLj Program

Assume that you have an SQLj program called MyClass. To run this program,
you would do the following:
1. Translate the SQLj (embedded SQL for Java) source file, MyClass.sqlj,

with the SQLj translator to generate the Java™ source file, Myclass.java.

282 Programming Client Applications

The translator also creates the profiles MyClass_SJProfile0.ser,
MyClass_SJProfile1.ser, ... (one profile for each connection context):

sqlj MyClass.sqlj

When you use the sqlj translator without specifying an sqlj.properties
file, the translator uses the following values:

sqlj.url=jdbc:db2:sample
sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver
sqlj.online=sqlj.semantics.JdbcChecker
sqlj.offline=sqlj.semantics.OfflineChecker

If you do specify an sqlj.properties file, make sure the following options
are set:

sqlj.url=jdbc:db2:dbname
sqlj.driver=COM.ibm.db2.jdbc.app.DB2Driver
sqlj.online=sqlj.semantics.JdbcChecker
sqlj.offline=sqlj.semantics.OfflineChecker

where dbname is the name of the database. You can also specify these
options on the command line. For example, to specify the database mydata
when translating MyClass, you can issue the following command:

sqlj -url=jdbc:db2:mydata MyClass.sqlj

Note that the SQLj translator automatically compiles the translated source
code into class files, unless you explicitly turn off the compile option with
the -compile=false clause.

2. Install DB2 SQLj Customizers on generated profiles and create the DB2®

packages in the DB2 database dbname:
db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname

-prepoptions="bindfile using MyClass0.bnd package using MyClass0"
MyClass_SJProfile0.ser

db2profc -user=user-name -password=user-password -url=jdbc:db2:dbname
-prepoptions="bindfile using MyClass1.bnd package using MyClass1"
MyClass_SJProfile1.ser

...

3. Execute the SQLj program:
java MyClass

The translator generates the SQL syntax for the database for which the SQLj
profile is customized. For example:

i = { VALUES (F(:x)) };

is translated by the SQLj translator and stored as:
? = VALUES (F (?))

Chapter 10. Programming in Java 283

in the generated profile. When connecting to a DB2 Universal Database
database, DB2 will customize the VALUE statement into:

VALUES(F(?)) INTO ?

but when connecting to a DB2 Universal Database for OS/390 and z/OS
database, DB2 customizes the VALUE statement into:

SELECT F(?) INTO ? FROM SYSIBM.SYSDUMMY1

If you run the DB2 SQLj profile customizer, db2profc, against a DB2 Universal
Database database and generate a bind file, you cannot use that bind file to
bind up to a DB2 for OS/390® database when there is a VALUES clause in the
bind file. This also applies to generating a bind file against a DB2 for OS/390
database and trying to bind with it to a DB2 Universal Database database.

Related tasks:

v “Building SQLJ Applets” in the Application Development Guide: Building and
Running Applications

v “Building SQLJ Applications” in the Application Development Guide: Building
and Running Applications

v “Building SQLJ Routines” in the Application Development Guide: Building and
Running Applications

v “Building SQLJ Programs” in the Application Development Guide: Building and
Running Applications

SQLj Translator Options

The SQLj translator supports the same precompile options as the DB2®

PRECOMPILE command, with the following exceptions:
CONNECT
DISCONNECT
DYNAMICRULES
NOLINEMACRO
OPTLEVEL
OUTPUT
SQLCA
SQLFLAG
SQLRULES
SYNCPOINT
TARGET
WCHARTYPE

To print the content of the profiles generated by the SQLj translator in plain
text, use the profp utility as follows:

profp MyClass_SJProfile0.ser
profp MyClass_SJProfile1.ser

...

284 Programming Client Applications

To print the content of the DB2 customized version of the profile in plain text,
use the db2profp utility as follows, where dbname is the name of the database:

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname
MyClass_SJProfile0.ser

db2profp -user=user-name -password=user-password -url=jdbc:db2:dbname
MyClass_SJProfile1.ser

...

Troubleshooting Java Applications

The sections that follow describe the trace facilities available for Java, and
SQLSTATE and SQLCODE values in Java.

Trace Facilities in Java

Both the CLI/ODBC/JDBC trace facility and the DB2 trace facility, db2trc, can
be used to diagnose problems related to JDBC or SQLj programs.

Note: The type 4 JDBC driver does not use the CLI/ODBC/JDBC trace
facility. Tracing for the type 4 JDBC driver is enabled using the
setLogWriter() method on the javax.sql.DataSource API.

You can also install run-time call tracing capability into SQLj programs. The
utility operates on the profiles associated with a program. Suppose a program
uses a profile called App_SJProfile0. To install call tracing into the program,
use the command:

profdb App_SJProfile0.ser

The profdb utility uses the Java™ Virtual Machine to run the main() method
of class sqlj.runtime.profile.util.AuditorInstaller. For more details on
usage and options for the AuditorInstaller class, visit the DB2 Java Web site.

Related concepts:

v “CLI/ODBC/JDBC Trace Facility” on page 285
v “CLI and JDBC Trace Files” on page 294

Related reference:

v “db2trc - Trace” in the Command Reference

CLI/ODBC/JDBC Trace Facility

This topic discusses the following subjects:
v “DB2 CLI and DB2 JDBC Trace Configuration” on page 286
v “DB2 CLI Trace Options and the db2cli.ini File” on page 287
v “DB2 JDBC Trace Options and the db2cli.ini File” on page 291

Chapter 10. Programming in Java 285

v “DB2 CLI Driver Trace Versus ODBC Driver Manager Trace” on page 292
v “DB2 CLI Driver, DB2 JDBC driver, and DB2 traces” on page 293
v “DB2 CLI and DB2 JDBC traces and CLI or Java Stored Procedures” on

page 293

The DB2 CLI and DB2® JDBC drivers offer comprehensive tracing facilities. By
default, these facilities are disabled and use no additional computing
resources. When enabled, the trace facilities generate one or more text log files
whenever an application accesses the appropriate driver (DB2 CLI or DB2
JDBC). These log files provide detailed information about:
v the order in which CLI or JDBC functions were called by the application
v the contents of input and output parameters passed to and received from

CLI or JDBC functions
v the return codes and any error or warning messages generated by CLI or

JDBC functions

DB2 CLI and DB2 JDBC trace file analysis can benefit application developers
in a number of ways. First, subtle program logic and parameter initialization
errors are often evident in the traces. Second, DB2 CLI and DB2 JDBC traces
may suggest ways of better tuning an application or the databases it accesses.
For example, if a DB2 CLI trace shows a table being queried many times on a
particular set of attributes, an index corresponding to those attributes might
be created on the table to improve application performance. Finally, analysis
of DB2 CLI and DB2 JDBC trace files can help application developers
understand how a third party application or interface is behaving.

DB2 CLI and DB2 JDBC Trace Configuration:

The configuration parameters for both DB2 CLI and DB2 JDBC traces facilities
are read from the DB2 CLI configuration file db2cli.ini. By default, this file is
located in the \sqllib path on the Windows® platform and the /sqllib/cfg
path on UNIX® platforms. You can override the default path by setting the
DB2CLIINIPATH environment variable. On the Windows platform, an
additional db2cli.ini file may be found in the user’s profile (or home) directory
if there are any user-defined data sources defined using the ODBC Driver
Manager. This db2cli.ini file will override the default file.

To view the current db2cli.ini trace configuration parameters from the
command line processor, issue the following command:
db2 GET CLI CFG FOR SECTION COMMON

There are three ways to modify the db2cli.ini file to configure the DB2 CLI
and DB2 JDBC trace facilities:
v use the DB2 Configuration Assistant if it is available

286 Programming Client Applications

v manually edit the db2cli.ini file using a text editor
v issue the UPDATE CLI CFG command from the command line processor

For example, the following command issued from the command line
processor updates the db2cli.ini file and enables the JDBC tracing facility:
db2 UPDATE CLI CFG FOR SECTION COMMON USING jdbctrace 1

Notes:

1. Typically the DB2 CLI and DB2 JDBC trace configuration options are only
read from the db2cli.ini configuration file at the time an application is
initialized. However, a special db2cli.ini trace option,
TRACEREFRESHINTERVAL, can be used to indicate an interval at which
specific DB2 CLI trace options are reread from the db2cli.ini file.

2. The DB2 CLI tracing facility can also be configured dynamically by setting
the SQL_ATTR_TRACE and SQL_ATTR_TRACEFILE environment
attributes. These settings will override the settings contained in the
db2cli.ini file.

Important: Disable the DB2 CLI and DB2 JDBC trace facilities when they are
not needed. Unnecessary tracing can reduce application
performance and may generate unwanted trace log files. DB2 does
not delete any generated trace files and will append new trace
information to any existing trace files.

DB2 CLI Trace Options and the db2cli.ini File:

When an application using the DB2 CLI driver begins execution, the driver
checks for trace facility options in the [COMMON] section of the db2cli.ini
file. These trace options are specific trace keywords that are set to certain
values in the db2cli.ini file under the [COMMON] section.

Note: Because DB2 CLI trace keywords appear in the [COMMON] section of
the db2cli.ini file, their values apply to all database connections through
the DB2 CLI driver.

The DB2 CLI trace keywords that can be defined are:
v TRACE
v TRACEFILENAME
v TRACEPATHNAME
v TRACEFLUSH
v TRACEREFRESHINTERVAL
v TRACECOMM
v TRACETIMESTAMP
v TRACEPIDTID

Chapter 10. Programming in Java 287

v TRACEPIDLIST
v TRACETIME
v TRACESTMTONLY

Note: DB2 CLI trace keywords are only read from the db2cli.ini file once at
application initialization time unless the TRACEREFRESHINTERVAL
keyword is set. If this keyword is set, the TRACE and TRACEPIDLIST
keywords are reread from the db2cli.ini file at the specified interval and
applied, as appropriate, to the currently executing application.

TRACE = 0 | 1
The TRACE keyword determines whether or not any of the other DB2
CLI trace keywords have effect. If this keyword is unset or set to the
default value of 0, the DB2 CLI trace facility is disabled. If this
keyword is set to 1, the DB2 CLI trace facility is enabled and the other
trace keywords are considered.

By itself, the TRACE keyword has little effect except to enable the
DB2 CLI trace facility processing. No trace output is generated unless
one of the TRACEPATHNAME or TRACEFILENAME keywords is
also specified.

TRACEFILENAME = <fully_qualified_trace_file_name>
The fully qualified name of the log file to which all DB2 CLI trace
information is written.

If the file does not exist, the DB2 CLI trace facility will attempt to
create it. If the file already exists, new trace information for the
current session, if any, will be appended to the previous contents of
that file.

The TRACEFILENAME keyword option should not be used with
multi-process or multithreaded applications as the trace output for all
threads or processes will be written to the same log file, and the
output for each thread or process will be difficult to decipher.
Furthermore, semaphores are used to control access to the shared
trace file which could change the behavior of multithreaded
applications. There is no default DB2 CLI trace output log file name.

TRACEPATHNAME = <fully_qualified_trace_path_name>
The fully qualified path name of the directory to which all DB2 CLI
trace information is written. The DB2 CLI trace facility will attempt to
generate a new trace log file each time an application accessing the
DB2 CLI interface is run. If the application is multithreaded, a
separate trace log file will be generated for each thread. A
concatenation of the application process ID and the thread sequence
number is automatically used to name trace log files. There is no
default path to which DB2 CLI trace output log files are written, and

288 Programming Client Applications

the path specified must exist at application execution time (the DB2
CLI driver will not create the path).

Note: If both TRACEFILENAME and TRACEPATHNAME are
specified, the TRACEFILENAME keyword takes precedence
and TRACEPATHNAME will be ignored.

TRACEFLUSH = 0 | <any positive integer>
The TRACEFLUSH keyword specifies how often trace information is
written to the DB2 CLI trace log file. By default, TRACEFLUSH is set
to 0 and each DB2 CLI trace log file is kept open until the traced
application or thread terminates normally. If the application
terminates abnormally, some trace information that was not written to
the trace log file may be lost.

To ensure the integrity and completeness of the trace information
written to the DB2 CLI trace log file, the TRACEFLUSH keyword can
be specified. After n trace entries have been written to the trace log
file, the DB2 CLI driver closes the file and then reopens it, appending
new trace entries to the end of the file. Each file close and reopen
operation incurs significant input/output overhead and can reduce
performance considerably. The smaller the value of the TRACEFLUSH
keyword, the greater the impact DB2 CLI tracing has on the performance of
the application.

Setting TRACEFLUSH=1 has the most impact on performance, but
will ensure that each entry is written to disk before the application
continues to the next statement.

TRACEREFRESHINTERVAL = 0 | <any positive integer>
Setting TRACEREFRESHINTERVAL to a positive integer value n other
than the default value of 0 causes the DB2 CLI trace facility to reread
the TRACE and TRACEPIDLIST keywords from the db2cli.ini file at
the specified interval (every n seconds). The DB2 CLI trace facility
then applies those keywords, as appropriate, to the trace that is
currently executing.

The remaining DB2 CLI trace configuration keywords determine what
information is written to the DB2 CLI trace log files.

TRACECOMM = 0 | 1
Setting TRACECOMM to the default value of 0 means no DB2
client-server communication information will be included in the DB2
CLI trace. Setting TRACECOMM to 1 causes the DB2 CLI trace to
show:
v which DB2 CLI functions are processed completely on the client

and which DB2 CLI functions involve communication with the
server

Chapter 10. Programming in Java 289

v the number of bytes sent and received in each communication with
the server

v the time spent communicating data between the client and server

TRACETIMESTAMP = 0 | 1 | 2 | 3
Setting TRACETIMESTAMP to a value other than the default of 0
means the current timestamp or absolute execution time is added to
the beginning of each line of trace information as it is being written to
the DB2 CLI trace log file. Setting TRACETIMESTAMP to 1 prepends
the absolute execution time in seconds and milliseconds, followed by
a timestamp. Setting TRACETIMESTAMP to 2 prepends the absolute
execution time in seconds and milliseconds. Setting
TRACETIMESTAMP to 3 prepends the timestamp.

TRACEPIDTID = 0 | 1
Setting TRACEPIDTID to the default value of 0 means process and
thread ID information will not be added to each line in the DB2 CLI
trace. Setting TRACEPIDTID to 1 means process and thread ID
information will be included in the trace.

TRACEPIDLIST = <no value> | <pid1,pid2, pid3,...>
Setting TRACEPIDLIST to its default of no value, or leaving it unset,
means all processes accessing the DB2 CLI driver interface will be
traced by the DB2 CLI trace facility. Setting TRACEPIDLIST to a list of
one or more comma-delimited process ID values will restrict the CLI
traces generated to the processes appearing in that list.

TRACETIME = 0 | 1
Setting TRACETIME to its default value of 1, or leaving it unset,
means the elapsed time between CLI function calls and returns will be
calculated and included in the DB2 CLI trace. Setting TRACETIME to
0 means the elapsed time between CLI function calls and returns will
not be calculated and included in the DB2 CLI trace.

TRACESTMTONLY = 0 | 1
Setting TRACESTMTONLY to its default value of 0 means trace
information for all DB2 CLI function calls will be written to the DB2
CLI trace log file. Setting TRACESTMTONLY to 1 means only
information related to the SQLExecute() and SQLExecDirect() function
calls will be written to the log file. This trace option can be useful in
determining the number of times a statement is executed in an
application.

An example db2cli.ini file trace configuration using these DB2 CLI keywords
and values is:
[COMMON]
trace=1
TraceFileName=\temp\clitrace.txt
TRACEFLUSH=1

290 Programming Client Applications

Notes:

1. CLI trace keywords are NOT case sensitive. However, path and file name
keyword values may be case-sensitive on some operating systems (such as
UNIX).

2. If either a DB2 CLI trace keyword or its associated value in the db2cli.ini
file is invalid, the DB2 CLI trace facility will ignore it and use the default
value for that trace keyword instead.

DB2 JDBC Trace Options and the db2cli.ini File:

When an application using the DB2 JDBC driver begins execution, the driver
also checks for trace facility options in the db2cli.ini file. As with the DB2 CLI
trace options, DB2 JDBC trace options are specified as keyword/value pairs
located under the [COMMON] section of the db2cli.ini file.

Note: Because DB2 JDBC trace keywords appear in the [COMMON] section
of the db2cli.ini file, their values apply to all database connections
through the DB2 JDBC driver.

The DB2 JDBC trace keywords that can be defined are:
v JDBCTRACE
v JDBCTRACEPATHNAME
v JDBCTRACEFLUSH

JDBCTRACE = 0 | 1
The JDBCTRACE keyword controls whether or not other DB2 JDBC
tracing keywords have any effect on program execution. Setting
JDBCTRACE to its default value of 0 disables the DB2 JDBC trace
facility. Setting JDBCTRACE to 1 enables it.

By itself, the JDBCTRACE keyword has little effect and produces no
trace output unless the JDBCTRACEPATHNAME keyword is also
specified.

JDBCTRACEPATHNAME = <fully_qualified_trace_path_name>
The value of JDBCTRACEPATHNAME is the fully qualified path of
the directory to which all DB2 JDBC trace information is written. The
DB2 JDBC trace facility attempts to generate a new trace log file each
time a JDBC application is executed using the DB2 JDBC driver. If the
application is multithreaded, a separate trace log file will be generated
for each thread. A concatenation of the application process ID, the
thread sequence number, and a thread-identifying string are
automatically used to name trace log files. There is no default path
name to which DB2 JDBC trace output log files are written.

JDBCTRACEFLUSH = 0 | 1
The JDBCTRACEFLUSH keyword specifies how often trace

Chapter 10. Programming in Java 291

information is written to the DB2 JDBC trace log file. By default,
JDBCTRACEFLUSH is set to 0 and each DB2 JDBC trace log file is
kept open until the traced application or thread terminates normally.
If the application terminates abnormally, some trace information that
was not written to the trace log file may be lost.

To ensure the integrity and completeness of the trace information
written to the DB2 JDBC trace log file, the JDBCTRACEFLUSH
keyword can be set to 1. After each trace entry has been written to the
trace log file, the DB2 JDBC driver closes the file and then reopens it,
appending new trace entries to the end of the file. This guarantees
that no trace information will be lost.

Note: Each DB2 JDBC log file close and reopen operation incurs significant
input/output overhead and can reduce application performance
considerably.

An example db2cli.ini file trace configuration using these DB2 JDBC keywords
and values is:
[COMMON]
jdbctrace=1
JdbcTracePathName=\temp\jdbctrace\
JDBCTRACEFLUSH=1

Notes:

1. JDBC trace keywords are NOT case sensitive. However, path and file name
keyword values may be case-sensitive on some operating systems (such as
UNIX).

2. If either a DB2 JDBC trace keyword or its associated value in the db2cli.ini
file is invalid, the DB2 JDBC trace facility will ignore it and use the default
value for that trace keyword instead.

3. Enabling DB2 JDBC tracing does not enable DB2 CLI tracing. Some
versions of the DB2 JDBC driver depend on the DB2 CLI driver to access
the database. Consequently, Java™ developers may also want to enable
DB2 CLI tracing for additional information on how their applications
interact with the database through the various software layers. DB2 JDBC
and DB2 CLI trace options are independent of each other and can be
specified together in any order under the [COMMON] section of the
db2cli.ini file.

DB2 CLI Driver Trace Versus ODBC Driver Manager Trace:

It is important to understand the difference between an ODBC driver manager
trace and a DB2 CLI driver trace. An ODBC driver manager trace shows the
ODBC function calls made by an ODBC application to the ODBC driver
manager. In contrast, a DB2 CLI driver trace shows the function calls made by
the ODBC driver manager to the DB2 CLI driver on behalf of the application.

292 Programming Client Applications

An ODBC driver manager might forward some function calls directly from
the application to the DB2 CLI driver. However, the ODBC driver manager
might also delay or avoid forwarding some function calls to the driver. The
ODBC driver manager may also modify application function arguments or
map application functions to other functions before forwarding the call on to
the DB2 CLI driver.

Reasons for application function call intervention by the ODBC driver
manager include:
v Applications written using ODBC 2.0 functions that have been deprecated

in ODBC 3.0 will have the old functions mapped to new functions.
v ODBC 2.0 function arguments deprecated in ODBC 3.0 will be mapped to

equivalent ODBC 3.0 arguments.
v The Microsoft® cursor library will map calls such as SQLExtendedFetch() to

multiple calls to SQLFetch() and other supporting functions to achieve the
same end result.

v ODBC driver manager connection pooling will usually defer
SQLDisconnect() requests (or avoid them altogether if the connection gets
reused).

For these and other reasons, application developers may find an ODBC driver
manager trace to be a useful complement to the DB2 CLI driver trace.

For more information on capturing and interpreting ODBC driver manager
traces, refer to the ODBC driver manager documentation. On the Windows
platforms, refer to the Microsoft ODBC 3.0 Software Development Kit and
Programmer’s Reference, also available online at:
http://www.msdn.microsoft.com/.

DB2 CLI Driver, DB2 JDBC driver, and DB2 traces:

Internally, some versions of the DB2 JDBC driver make use of the DB2 CLI
driver for database access. For example, the Java getConnection() method may
be internally mapped by the DB2 JDBC driver to the DB2 CLI SQLConnect()
function. As a result, Java developers might find a DB2 CLI trace to be a
useful complement to the DB2 JDBC trace.

The DB2 CLI driver makes use of many internal and DB2 specific functions to
do its work. These internal and DB2 specific function calls are logged in the
DB2 trace. Application developers will not find DB2 traces useful, as they are
only meant to assist IBM® Service in problem determination and resolution.

DB2 CLI and DB2 JDBC traces and CLI or Java Stored Procedures:

Chapter 10. Programming in Java 293

On all workstation platforms, the DB2 CLI and DB2 JDBC trace facilities can
be used to trace DB2 CLI and DB2 JDBC stored procedures.

Most of the DB2 CLI and DB2 JDBC trace information and instructions given
in earlier sections is generic and applies to both applications and stored
procedures equally. However, unlike applications which are clients of a
database server (and typically execute on a machine separate from the
database server), stored procedures execute at the database server. Therefore,
the following additional steps must be taken when tracing DB2 CLI or DB2
JDBC stored procedures:
v Ensure the trace keyword options are specified in the db2cli.ini file located

at the DB2 server.
v If the TRACEREFRESHINTERVAL keyword is not set to a positive,

non-zero value, ensure all keywords are configured correctly prior to
database startup time (that is, when the db2start command is issued).
Changing trace settings while the database server is running may have
unpredictable results. For example, if the TRACEPATHNAME is changed
while the server is running, then the next time a stored procedure is
executed, some trace files may be written to the new path, while others are
written to the original path. To ensure consistency, restart the server any
time a trace keyword other than TRACE or TRACEPIDLIST is modified.

Related concepts:

v “db2cli.ini Initialization File” in the CLI Guide and Reference, Volume 1

v “CLI and JDBC Trace Files” on page 294

Related reference:

v “SQLSetEnvAttr Function (CLI) - Set Environment Attribute” in the CLI
Guide and Reference, Volume 2

v “db2trc - Trace” in the Command Reference

v “GET CLI CONFIGURATION” in the Command Reference

v “UPDATE CLI CONFIGURATION” in the Command Reference

v “Miscellaneous variables” in the Administration Guide: Performance

v “CLI/ODBC Configuration Keywords Listing by Category” in the CLI Guide
and Reference, Volume 1

CLI and JDBC Trace Files

Applications that access the DB2® CLI and DB2 JDBC drivers can make use of
the DB2 CLI and DB2 JDBC trace facilities. These utilities record all function
calls made by the DB2 CLI or DB2 JDBC drivers to a log file which is useful
for problem determination. This topic discusses how to access and interpret
these log files generated by the tracing facilities:
v “CLI and JDBC Trace File Location” on page 295

294 Programming Client Applications

v “CLI Trace File Interpretation” on page 296
v “JDBC Trace File Interpretation” on page 301

CLI and JDBC Trace File Location:

If the TRACEFILENAME keyword was used in the db2cli.ini file to specify a
fully qualified file name, then the DB2 CLI trace log file will be in the location
specified. If a relative file name was specified for the DB2 CLI trace log file
name, the location of that file will depend on what the operating system
considers to be the current path of the application.

Note: If the user executing the application does not have sufficient authority
to write to the trace log file in the specified path, no file will be
generated and no warning or error is given.

If either or both of the TRACEPATHNAME and JDBCTRACEPATHNAME
keywords were used in the db2cli.ini file to specify fully qualified directories,
then the DB2 CLI and DB2 JDBC trace log files will be in the location
specified. If a relative directory name was specified for either or both trace
directories, the operating system will determine its location based on what it
considers to be the current path of the application.

Note: If the user executing the application does not have sufficient authority
to write trace files in the specified path, no file will be generated and
no warning or error is given. If the specified trace path does not exist,
it will not be created.

The DB2 CLI and DB2 JDBC trace facilities automatically use the application’s
process ID and thread sequence number to name the trace log files when the
TRACEPATHNAME and JDBCTRACEPATHNAME keywords have been set.
For example, a DB2 CLI trace of an application with three threads might
generate the following DB2 CLI trace log files: 100390.0, 100390.1, 100390.2.

Similarly, a DB2 JDBC trace of a Java™ application with two threads might
generate the following JDBC trace log files: 7960main.trc, 7960Thread-1.trc.

Note: If the trace directory contains both old and new trace log files, file date
and time stamp information can be used to locate the most recent trace
files.

If no DB2 CLI or DB2 JDBC trace output files appear to have been created:
v Verify that the trace configuration keywords are set correctly in the

db2cli.ini file. Issuing the db2 GET CLI CFG FOR SECTION COMMON command
from the command line processor is a quick way to do this.

Chapter 10. Programming in Java 295

v Ensure the application is restarted after updating the db2cli.ini file.
Specifically, the DB2 CLI and DB2 JDBC trace facilities are initialized during
application startup. Once initialized, the DB2 JDBC trace facility cannot be
reconfigured. The DB2 CLI trace facility can be reconfigured at run time but
only if the TRACEREFRESHINTERVAL keyword was appropriately
specified prior to application startup.

Note: Only the TRACE and TRACEPIDLIST DB2 CLI keywords can be
reconfigured at run time. Changes made to other DB2 CLI keywords,
including TRACEREFRESHINTERVAL, have no effect without an
application restart.

v If the TRACEREFRESHINTERVAL keyword was specified prior to
application startup, and if the TRACE keyword was initially set to 0, ensure
that enough time has elapsed for the DB2 CLI trace facility to reread the
TRACE keyword value.

v If either or both the TRACEPATHNAME and JDBCTRACEPATHNAME
keywords are used to specify trace directories, ensure those directories exist
prior to starting the application.

v Ensure the application has write access to the specified trace log file or
trace directory.

v Check the DB2CLIINIPATH environment variable. If set, the DB2 CLI and
DB2 JDBC trace facilities expect the db2cli.ini file to be at the location
specified by this variable.

v If the application uses ODBC to interface with the DB2 CLI driver, verify
that one of the SQLConnect(), SQLDriverConnect() or SQLBrowseConnect()
functions have been successfully called. No entries will be written to the
DB2 CLI trace log files until a database connection has successfully been
made.

CLI Trace File Interpretation:

DB2 CLI traces always begin with a header that identifies the process ID and
thread ID of the application that generated the trace, the time the trace began,
and product specific information such as the local DB2 build level and DB2
CLI driver version. For example:
1 [Process: 1227, Thread: 1024]
2 [Date, Time: 01-27-2002 13:46:07.535211]
3 [Product: QDB2/LINUX 7.1.0]
4 [Level Identifier: 02010105]
5 [CLI Driver Version: 07.01.0000]
6 [Informational Tokens: "DB2 v7.1.0","n000510",""]

Note: Trace examples used in this section have line numbers added to the left
hand side of the trace. These line numbers have been added to aid the
discussion and will not appear in an actual DB2 CLI trace.

296 Programming Client Applications

Immediately following the trace header, there are usually a number of trace
entries related to environment and connection handle allocation and
initialization. For example:
7 SQLAllocEnv(phEnv=&bffff684)
8 –––> Time elapsed - +9.200000E-004 seconds

9 SQLAllocEnv(phEnv=0:1)
10 <––– SQL_SUCCESS Time elapsed - +7.500000E-004 seconds

11 SQLAllocConnect(hEnv=0:1, phDbc=&bffff680)
12 –––> Time elapsed - +2.334000E-003 seconds

13 SQLAllocConnect(phDbc=0:1)
14 <––– SQL_SUCCESS Time elapsed - +5.280000E-004 seconds

15 SQLSetConnectOption(hDbc=0:1, fOption=SQL_ATTR_AUTOCOMMIT, vParam=0)
16 –––> Time elapsed - +2.301000E-003 seconds

17 SQLSetConnectOption()
18 <––– SQL_SUCCESS Time elapsed - +3.150000E-004 seconds

19 SQLConnect(hDbc=0:1, szDSN="SAMPLE", cbDSN=-3, szUID="", cbUID=-3,
szAuthStr="", cbAuthStr=-3)

20 –––> Time elapsed - +7.000000E-005 seconds
21 (DBMS NAME="DB2/LINUX", Version="07.01.0000", Fixpack="0x22010105")

22 SQLConnect()
23 <––– SQL_SUCCESS Time elapsed - +5.209880E-001 seconds
24 (DSN=""SAMPLE"")

25 (UID=" ")

26 (PWD="*")

In the above trace example, notice that there are two entries for each DB2 CLI
function call (for example, lines 19-21 and 22-26 for the SQLConnect() function
call). This is always the case in DB2 CLI traces. The first entry shows the
input parameter values passed to the function call while the second entry
shows the function output parameter values and return code returned to the
application.

The above trace example shows that the SQLAllocEnv() function successfully
allocated an environment handle (phEnv=0:1) at line 9. That handle was
then passed to the SQLAllocConnect() function which successfully allocated a
database connection handle (phDbc=0:1) as of line 13. Next, the
SQLSetConnectOption() function was used to set the phDbc=0:1 connection’s
SQL_ATTR_AUTOCOMMIT attribute to SQL_AUTOCOMMIT_OFF (
vParam=0) at line 15. Finally, SQLConnect() was called to connect to the
target database (SAMPLE) at line 19.

Chapter 10. Programming in Java 297

Included in the input trace entry of the SQLConnect() function on line 21 is
the build and FixPak level of the target database server. Other information
that might also appear in this trace entry includes input connection string
keywords and the code pages of the client and server. For example, suppose
the following information also appeared in the SQLConnect() trace entry:
(Application Codepage=819, Database Codepage=819,

Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=819,
Application Char Codepage=819, Application Graphic Codepage=819)

This would mean the application and the database server were using the same
code page (819).

The return trace entry of the SQLConnect() function also contains important
connection information (lines 24-26 in the above example trace). Additional
information that might be displayed in the return entry includes any PATCH1
or PATCH2 keyword values that apply to the connection. For example, if
PATCH2=27,28 was specified in the db2cli.ini file under the COMMON
section, the following line should also appear in the SQLConnect() return
entry:
(PATCH2="27,28")

Following the environment and connection related trace entries are the
statement related trace entries. For example:
27 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)
28 –––> Time elapsed - +1.868000E-003 seconds

29 SQLAllocStmt(phStmt=1:1)
30 <––– SQL_SUCCESS Time elapsed - +6.890000E-004 seconds

31 SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG
VARCHAR(10))", cbSqlStr=-3)

32 –––> Time elapsed - +2.863000E-003 seconds
33 (StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

34 SQLExecDirect()
35 <––– SQL_SUCCESS Time elapsed - +2.387800E-002 seconds

In the above trace example, the database connection handle (phDbc=0:1) was
used to allocate a statement handle (phStmt=1:1) at line 29. An unprepared
SQL statement was then executed on that statement handle at line 31. If the
TRACECOMM=1 keyword had been set in the db2cli.ini file, the
SQLExecDirect() function call trace entries would have shown additional
client-server communication information as follows:
SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG

VARCHAR(10))", cbSqlStr=-3)
–––> Time elapsed - +2.876000E-003 seconds

(StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

298 Programming Client Applications

sqlccsend(ulBytes - 232)
sqlccsend(Handle - 1084869448)
sqlccsend() - rc - 0, time elapsed - +1.150000E-004
sqlccrecv()
sqlccrecv(ulBytes - 163) - rc - 0, time elapsed - +2.243800E-002

SQLExecDirect()
<––– SQL_SUCCESS Time elapsed - +2.384900E-002 seconds

Notice the additional sqlccsend() and sqlccrecv() function call information in
this trace entry. The sqlccsend() call information reveals how much data was
sent from the client to the server, how long the transmission took, and the
success of that transmission (0 = SQL_SUCCESS). The sqlccrecv() call
information then reveals how long the client waited for a response from the
server and the amount of data included in the response.

Often, multiple statement handles will appear in the DB2 CLI trace. By paying
close attention to the statement handle identifier, one can easily follow the
execution path of a statement handle independent of all other statement
handles appearing in the trace.

Statement execution paths appearing in the DB2 CLI trace are usually more
complicated than the example shown above. For example:
36 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)
37 –––> Time elapsed - +1.532000E-003 seconds

38 SQLAllocStmt(phStmt=1:2)
39 <––– SQL_SUCCESS Time elapsed - +6.820000E-004 seconds

40 SQLPrepare(hStmt=1:2, pszSqlStr="INSERT INTO GREETING VALUES (?)",
cbSqlStr=-3)

41 –––> Time elapsed - +2.733000E-003 seconds
42 (StmtOut="INSERT INTO GREETING VALUES (?)")

43 SQLPrepare()
44 <––– SQL_SUCCESS Time elapsed - +9.150000E-004 seconds

45 SQLBindParameter(hStmt=1:2, iPar=1, fParamType=SQL_PARAM_INPUT,
fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=14,
ibScale=0, rgbValue=&080eca70, cbValueMax=15,
pcbValue=&080eca4c)

46 –––> Time elapsed - +4.091000E-003 seconds

47 SQLBindParameter()
48 <––– SQL_SUCCESS Time elapsed - +6.780000E-004 seconds

49 SQLExecute(hStmt=1:2)
50 –––> Time elapsed - +1.337000E-003 seconds
51 (iPar=1, fCType=SQL_C_CHAR, rgbValue="Hello World!!!", pcbValue=14,

piIndicatorPtr=14)

Chapter 10. Programming in Java 299

52 SQLExecute()
53 <––– SQL_ERROR Time elapsed - +5.951000E-003 seconds

In the above trace example, the database connection handle (phDbc=0:1) was
used to allocate a second statement handle (phStmt=1:2) at line 38. An SQL
statement with one parameter marker was then prepared on that statement
handle at line 40. Next, an input parameter (iPar=1) of the appropriate SQL
type (SQL_CHAR) was bound to the parameter marker at line 45. Finally,
the statement was executed at line 49. Notice that both the contents and
length of the input parameter (rgbValue=″Hello World!!!″, pcbValue=14) are
displayed in the trace on line 51.

The SQLExecute() function fails at line 52. If the application calls a diagnostic
DB2 CLI function like SQLError() to diagnose the cause of the failure, then
that cause will appear in the trace. For example:
54 SQLError(hEnv=0:1, hDbc=0:1, hStmt=1:2, pszSqlState=&bffff680,

pfNativeError=&bfffee78, pszErrorMsg=&bffff280,
cbErrorMsgMax=1024, pcbErrorMsg=&bfffee76)

55 –––> Time elapsed - +1.512000E-003 seconds

56 SQLError(pszSqlState="22001", pfNativeError=-302, pszErrorMsg="[IBM][CLI
Driver][DB2/LINUX] SQL0302N The value of a host variable in the EXECUTE
or OPEN statement is too large for its corresponding use.
SQLSTATE=22001", pcbErrorMsg=157)

57 <––– SQL_SUCCESS Time elapsed - +8.060000E-004 seconds

The error message returned at line 56 contains the DB2 native error code that
was generated (SQL0302N), the sqlstate that corresponds to that code (
SQLSTATE=22001) and a brief description of the error. In this example, the
source of the error is evident: on line 49, the application is trying to insert a
string with 14 characters into a column defined as VARCHAR(10) on line 31.

If the application does not respond to a DB2 CLI function warning or error
return code by calling a diagnostic function like SQLError(), the warning or
error message should still be written to the DB2 CLI trace. However, the
location of that message in the trace may not be close to where the error
actually occurred. Furthermore, the trace will indicate that the error or
warning message was not retrieved by the application. For example, if not
retrieved, the error message in the above example might not appear until a
later, seemingly unrelated DB2 CLI function call as follows:
SQLDisconnect(hDbc=0:1)

–––> Time elapsed - +1.501000E-003 seconds
sqlccsend(ulBytes - 72)
sqlccsend(Handle - 1084869448)
sqlccsend() - rc - 0, time elapsed - +1.080000E-004
sqlccrecv()
sqlccrecv(ulBytes - 27) - rc - 0, time elapsed - +1.717950E-001

(Unretrieved error message="SQL0302N The value of a host variable in the

300 Programming Client Applications

EXECUTE or OPEN statement is too large for its corresponding use.
SQLSTATE=22001")

SQLDisconnect()
<––– SQL_SUCCESS Time elapsed - +1.734130E-001 seconds

The final part of a DB2 CLI trace should show the application releasing the
database connection and environment handles that it allocated earlier in the
trace. For example:
58 SQLTransact(hEnv=0:1, hDbc=0:1, fType=SQL_ROLLBACK)
59 –––> Time elapsed - +6.085000E-003 seconds
60 (ROLLBACK=0)

61 SQLTransact()
<––– SQL_SUCCESS Time elapsed - +2.220750E-001 seconds

62 SQLDisconnect(hDbc=0:1)
63 –––> Time elapsed - +1.511000E-003 seconds

64 SQLDisconnect()
65 <––– SQL_SUCCESS Time elapsed - +1.531340E-001 seconds

66 SQLFreeConnect(hDbc=0:1)
67 –––> Time elapsed - +2.389000E-003 seconds

68 SQLFreeConnect()
69 <––– SQL_SUCCESS Time elapsed - +3.140000E-004 seconds

70 SQLFreeEnv(hEnv=0:1)
71 –––> Time elapsed - +1.129000E-003 seconds

72 SQLFreeEnv()
73 <––– SQL_SUCCESS Time elapsed - +2.870000E-004 seconds

JDBC Trace File Interpretation:

DB2 JDBC traces always begin with a header that lists important system
information such as key environment variable settings, the JDK or JRE level,
the DB2 JDBC driver level, and the DB2 build level. For example:
1 ==
2 | Trace beginning on 2002-1-28 7:21:0.19
3 ==

4 System Properties:
5 ------------------
6 user.language = en
7 java.home = c:\Program Files\SQLLIB\java\jdk\bin\..
8 java.vendor.url.bug =
9 awt.toolkit = sun.awt.windows.WToolkit
10 file.encoding.pkg = sun.io
11 java.version = 1.1.8
12 file.separator = \

Chapter 10. Programming in Java 301

13 line.separator =
14 user.region = US
15 file.encoding = Cp1252
16 java.compiler = ibmjitc
17 java.vendor = IBM® Corporation
18 user.timezone = EST
19 user.name = db2user
20 os.arch = x86
21 java.fullversion = JDK 1.1.8 IBM build n118p-19991124 (JIT ibmjitc

V3.5-IBMJDK1.1-19991124)
22 os.name = Windows® NT
23 java.vendor.url = http://www.ibm.com/
24 user.dir = c:\Program Files\SQLLIB\samples\java
25 java.class.path =

.:C:\Program Files\SQLLIB\lib;C:\Program Files\SQLLIB\java;
C:\Program Files\SQLLIB\java\jdk\bin\

26 java.class.version = 45.3
27 os.version = 5.0
28 path.separator = ;
29 user.home = C:\home\db2user
30 --

Note: Trace examples used in this section have line numbers added to the left
hand side of the trace. These line numbers have been added to aid the
discussion and will not appear in an actual DB2 JDBC trace.

Immediately following the trace header, one usually finds a number of trace
entries related to initialization of the JDBC environment and database
connection establishment. For example:
31 jdbc.app.DB2Driver –> DB2Driver() (2002-1-28 7:21:0.29)
32 | Loaded db2jdbc from java.library.path
33 jdbc.app.DB2Driver <– DB2Driver() [Time Elapsed = 0.01]

34 DB2Driver - connect(jdbc:db2:sample)

35 jdbc.app.DB2ConnectionTrace –> connect(sample, info, db2driver, 0, false)
(2002-1-28 7:21:0.59)

36 | 10: connectionHandle = 1
37 jdbc.app.DB2ConnectionTrace <– connect() [Time Elapsed = 0.16]

38 jdbc.app.DB2ConnectionTrace –> DB2Connection (2002-1-28 7:21:0.219)
39 | source = sample
40 | Connection handle = 1
41 jdbc.app.DB2ConnectionTrace <– DB2Connection

In the above trace example, a request to load the DB2 JDBC driver was made
on line 31. This request returned successfully as reported on line 33.

The DB2 JDBC trace facility uses specific Java classes to capture the trace
information. In the above trace example, one of those trace classes,
DB2ConnectionTrace, has generated two trace entries numbered 35-37 and
38-41.

302 Programming Client Applications

Line 35 shows the connect() method being invoked and the input parameters
to that method call. Line 37 shows that the connect() method call has returned
successfully while line 36 shows the output parameter of that call (
Connection handle = 1).

Following the connection related entries, one usually finds statement related
entries in the JDBC trace. For example:
42 jdbc.app.DB2ConnectionTrace –> createStatement() (2002-1-28 7:21:0.219)
43 | Connection handle = 1
44 | jdbc.app.DB2StatementTrace –> DB2Statement(con, 1003, 1007)

(2002-1-28 7:21:0.229)
45 | jdbc.app.DB2StatementTrace <– DB2Statement() [Time Elapsed = 0.0]
46 | jdbc.app.DB2StatementTrace –> DB2Statement (2002-1-28 7:21:0.229)
47 | | Statement handle = 1:1
48 | jdbc.app.DB2StatementTrace <– DB2Statement
49 jdbc.app.DB2ConnectionTrace <– createStatement - Time Elapsed = 0.01

50 jdbc.app.DB2StatementTrace –> executeQuery(SELECT * FROM EMPLOYEE WHERE
empno = 000010) (2002-1-28 7:21:0.269)

51 | Statement handle = 1:1
52 | jdbc.app.DB2StatementTrace –> execute2(SELECT * FROM EMPLOYEE WHERE

empno = 000010) (2002-1-28 7:21:0.269)
52 | | jdbc.DB2Exception –> DB2Exception() (2002-1-28 7:21:0.729)
53 | | | 10: SQLError = [IBM][CLI Driver][DB2/NT] SQL0401N The data types of

the operands for the operation "=" are not compatible.
SQLSTATE=42818

54 | | | SQLState = 42818
55 | | | SQLNativeCode = -401
56 | | | LineNumber = 0
57 | | | SQLerrmc = =
58 | | jdbc.DB2Exception <– DB2Exception() [Time Elapsed = 0.0]
59 | jdbc.app.DB2StatementTrace <– executeQuery - Time Elapsed = 0.0

On line 42 and 43, the DB2ConnectionTrace class reported that the JDBC
createStatement() method had been called with connection handle 1. Within
that method, the internal method DB2Statement() was called as reported by
another DB2 JDBC trace facility class, DB2StatementTrace. Notice that this
internal method call appears ’nested’ in the trace entry. Lines 47-49 show that
the methods returned successfully and that statement handle 1:1 was
allocated.

On line 50, an SQL query method call is made on statement 1:1, but the call
generates an exception at line 52. The error message is reported on line 53 and
contains the DB2 native error code that was generated (SQL0401N), the
sqlstate that corresponds to that code (SQLSTATE=42818) and a brief
description of the error. In this example, the error results because the
EMPLOYEE.EMPNO column is defined as CHAR(6) and not an integer value
as assumed in the query.

Related concepts:

Chapter 10. Programming in Java 303

v “CLI/ODBC/JDBC Trace Facility” on page 285

Related reference:

v “Miscellaneous variables” in the Administration Guide: Performance

v “TRACE CLI/ODBC Configuration Keyword” in the CLI Guide and
Reference, Volume 1

v “TRACECOMM CLI/ODBC Configuration Keyword” in the CLI Guide and
Reference, Volume 1

v “TRACEFILENAME CLI/ODBC Configuration Keyword” in the CLI Guide
and Reference, Volume 1

v “TRACEPATHNAME CLI/ODBC Configuration Keyword” in the CLI Guide
and Reference, Volume 1

v “TRACEPIDLIST CLI/ODBC Configuration Keyword” in the CLI Guide and
Reference, Volume 1

v “TRACEREFRESHINTERVAL CLI/ODBC Configuration Keyword” in the
CLI Guide and Reference, Volume 1

SQLSTATE and SQLCODE Values in Java

If an SQL error occurs, JDBC and SQLj programs throw an SQLException. To
retrieve the SQLSTATE, SQLCODE, or SQLMSG values for an instance of an
SQLException, invoke the corresponding instance method as follows:

SQL return code SQLException method

SQLCODE SQLException.getErrorCode()

SQLMSG SQLException.getMessage()

SQLSTATE SQLException.getSQLState()

For example:
int sqlCode=0; // Variable to hold SQLCODE
String sqlState=“00000”; // Variable to hold SQLSTATE

try
{

// JDBC statements may throw SQLExceptions
stmt.executeQuery("Your JDBC statement here");

// SQLj statements may also throw SQLExeptions
#sql {..... your SQLj statement here};

}

/* Here’s how you can check for SQLCODEs and SQLSTATE */

catch (SQLException e)
{

sqlCode = e.getErrorCode() // Get SQLCODE

304 Programming Client Applications

sqlState = e.getSQLState() // Get SQLSTATE

if (sqlCode == -190 || sqlState.equals("42837"))
{

// Your code here to handle SQLCODE -190 or SQLSTATE 42837
}
else
{

// Your code here to handle other errors
}
System.err.println(e.getMessage()) ; // Print the exception
System.exit(1); // Exit

}

Chapter 10. Programming in Java 305

306 Programming Client Applications

Chapter 11. Java Applications Using WebSphere
Application Servers

Web Services 307
Web Services Architecture 309
Accessing Data. 311

DB2 Data Access Through Web Services 311
DB2 Data Access Using XML-Based
Queries 311
DB2 Data Access Using SQL-Based
Queries 311
Document Access Definition Extension
File 312

Java 2 Platform Enterprise Edition 312
Java 2 Platform Enterprise Edition (J2EE)
Overview 313
Java 2 Platform Enterprise Edition . . . 313
Java 2 Platform Enterprise Edition
Containers 314

Java 2 Platform Enterprise Edition Server 315
Java 2 Enterprise Edition Database
Requirements 315
Java Naming and Directory Interface
(JNDI) 315
Java Transaction Management. 316
Enterprise Java Beans 317

WebSphere 319
Connections to Enterprise Data 319
WebSphere Connection Pooling and Data
Sources 320
Parameters for Tuning WebSphere
Connection Pools 321
Benefits of WebSphere Connection
Pooling 325
Statement Caching in WebSphere . . . 326

Web Services

The Internet infrastructure is ready to support the next generation of
e-business applications, called Web services. Web services represent the next
level of function and efficiency in e-business. Specifically, Web services are
enhanced e-business applications that are easier to advertise and easier to
discover — by other businesses — because they are described in a more
uniform way on the Internet. These new enhancements allow e-business
applications to be connected more easily both inside and outside the
enterprise.

A Web service is a set of application functions that perform a service for a
requester, such as informational or transactional functions. A Web service can
be described and published to the network for use by other programs across
the network. Examples of publicly available Web services today include a
stock quote service, a service to retrieve news from Web news sources, a
service to return maps of historic weather events by zip code, currency
conversion services, and a service to return highway conditions in California.
Because Web services are modular, related Web services can be aggregated
into a larger Web service. For example, it is possible to imagine a wireless
application composed of separate Web services that obtain stock quotes,
subscribe to news services, convert currency, and manage calendars.

© Copyright IBM Corp. 1993-2002 307

Web services expands the Web’s audience to include programs as well as
humans. Specifically, Web services creates an architecture that makes it
possible for software to do what humans do with the Web; namely, access
documents and run applications in a general way, without requiring
application specific knowledge and client software. An architecture that
supports Web services provides the groundwork to realize that goal.

The Web services infrastructure is based on the eXtensible Markup Language
(XML). Messages and data flow between a service requester and a service
provider using XML. The sections that follow briefly describe Web services,
how DB2® data can be dynamically transformed to XML, and the important
role that DB2 plays in a Web services world.

Web services provide a level of abstraction that makes it relatively simple to
wrap an existing enterprise application and turn it into a Web service. Web
services are based on the XML standard data format and data exchange
mechanisms, which provide both flexibility and platform independence. With
Web services, requesters typically neither know nor care about the underlying
implementation of Web services, which can simplify the integration of
heterogeneous business processes.

Web services also provide you with a way to make your key business
processes accessible to your customers, partners, and suppliers. For example,
an airline can provide its airline reservation systems as a Web service to make
it easier for its large corporate customers to integrate the service into their
travel planning applications. A supplier can make its inventory levels and
pricing accessible to its key buyers.

In one possible example, a buyer matches up incoming purchase orders with
transportation services:
1. The buyer accesses the local database to select a list of purchase orders.
2. While viewing the detail for a particular purchase order, the buyer selects

a transportation service provider from an approved list, a list that is kept
in a private registry.

3. For each provider, the buyer receives quotes dynamically using Web
services capabilities. Each request is bound and sent to the location
specified in the registry and processed by the supplier’s Web service. The
supplier’s Web service takes input about the request, accesses its database
and returns the quote to the requester.

4. The buyer then chooses one service provider based on the prices quoted
and the selection is added back to the purchase order page to reflect the
selection of a shipping service provider.

Web services are likely to become widespread where existing technologies
have not. Web services leverage XML for data representation and exchange,

308 Programming Client Applications

and do not require complex language-dependent mappings and compile time
bindings. Web services offer both ease of development and ease of
modification. Further, Web services do not mandate tight synchronous
relationships between requesters and service providers. This characteristic
further simplifies the implementation of Web services in an Internet
environment in which it is impossible to tightly control network behavior. The
reliance on XML for data exchange and the abundance of existing and
emerging tools for Web service technology make it relatively easy to
implement your first Web service.

Web Services Architecture

The nature of Web services make them natural components in a
service-oriented architecture. In a typical service-oriented architecture, the
service providers host a network-accessible software module, or Web service.
A service provider defines a service description for a Web service, and
publishes it to a service registry. A service requester uses a find operation to
retrieve the service description from the registry, and uses the service
description to bind with the service provider and invoke or interact with the
Web service implementation.

In simple terms, a Web service is created by wrapping an application in such
a way that it can be accessed using standard XML messages, which are
themselves wrapped in such a way that masks the underlying transport
protocol. The service can be publicized by being registered in a
standard-format registry. This registry makes it possible for other people or
applications to find and use the service.

The pieces of the Web services architecture include:
v A Web service (a general term used to describe software that can be

invoked over the Web)
v Application-specific messages that are sent in standard XML document

formats conforming to the corresponding service description.
v The XML messages are contained in Simple Object Access Protocol (SOAP)

envelopes. SOAP is an application invocation protocol that defines a simple
protocol for exchanging information encoded as XML messages.
Because SOAP makes no assumptions on the implementation of the
endpoints, service requester needs only to create an XML request, send it to
a service provider, and understand the XML response that comes back. The
DB2® implementation is hidden from the requester.
A SOAP request consists of the envelope itself, which contains the
namespaces used by the rest of the SOAP message, an optional header, and
the body, which can be a remote procedure call (RPC) or an XML
document.

Chapter 11. Java Applications Using WebSphere Application Servers 309

SOAP builds on existing Internet standards such as HTTP and XML, but
can be used with any network protocol, programming language, or data
encoding model. For example, you can send SOAP messages over IBM®

MQSeries, FTP or even as mail messages.
v The logical interface and the service implementation are described by the

Web Services Description Language (WSDL). WSDL is an XML vocabulary
used to automate the details involved in communicating between Web
services applications. There are three pieces to WSDL: a data type
description (XML Schema), an interface description, and binding
information. The interface description is typically used at development
time, and the binding information can be used at either development or
execution time to invoke a particular service at the specified location. The
service description is crucial to making the Web services architecture loosely
coupled and reducing the amount of required shared understanding and
custom programming between service providers and service requesters.

v To enable service requesters to find your Web service, you can publish
descriptive information, such as taxonomy, ownership, business name,
business type and so on, via a registry that adheres to the Uniform
Description, Discovery and Integration (UDDI) specification or into some
other XML registry. The UDDI information can include a pointer to WSDL
interfaces, the binding information, as well as the actual business name (the
name that makes the purpose of the Web service understandable to users).
A UDDI registry is searchable by programs, which enables a service
requester to bind to a UDDI provider to find out more information about a
service before actually using it.

v The ability to compose Web services together is provided by Web Services
Flow Language (WSFL). WSFL can be used to describe a business process
(that is, an execution flow from beginning to end), or a description of
overall interactions between varying Web services with no specified
sequence.

Looking at how these specifications work together, a Web service can be
defined as a modular application that can be:
v Described using WSDL
v Published using UDDI
v Found using UDDI
v Bound using SOAP (or HTTP GET /POST)
v Invoked using SOAP (or HTTP GET/POST)
v Composed with other services into new services using WSFL

You can restrict access to Web services much as you would restrict access to
Web sites that are not available to everyone. WebSphere® provides many
options for controlling access and for authentication. The SOAP security
extension, included with WebSphere Application Server 4.0, is intended to be
a security architecture based on the SOAP Security specification, and on

310 Programming Client Applications

widely accepted security technologies such as secure socket layer (SSL). When
using HTTP as the transport mechanism, there are different ways to combine
HTTP basic authentication, SSL, and SOAP signatures to handle varying needs
of security and authentication.

Accessing Data

The sections that follow describe how to access DB2 data with Web services.

DB2 Data Access Through Web Services

IBM® is enabling its key programming models and application servers with
Web developing tools to automatically generate Web services from existing
artifacts and stored procedures. The sections that follow describe another way
to submit SQL queries and, if you require, control the format of the returned
Web service operations are planned to be supported:
v XML-based query or storage. In other words, an XML document is stored in

DB2® realational tables and composed again on retrieval. This method of
operation requires the presence of the DB2 XML Extender.

v SQL-based operations, such as calling stored procedures, or inserting,
updating, and deleting DB2 data.

Related concepts:

v “DB2 Data Access Using XML-Based Queries” on page 311
v “DB2 Data Access Using SQL-Based Queries” on page 311

DB2 Data Access Using XML-Based Queries

XML-based query allows you to compose XML documents from relational
data. You can also deconstruct an XML document into its component parts
and store it in relational tables. Part of the underlying suport for this
functionality is provided by DB2® XML Extender. The store and retrieve
operations are handled by special stored procedures that are shipped with
DB2 XML Extender.

One of the inputs into both storage and retrieval is the user-specified mapping
file that creates the association between relational data and XML document
structure. This mapping file is called a document access defintion (DAD), and
provides a way that you can create an XML document with the XML elements
and attributes named as you require and with the shape that you want. The
focus of this approach is in moving and manipulating XML documents.

DB2 Data Access Using SQL-Based Queries

In Web services, SQL-based query is simply the ability to send SQL
statements, including stored procedure calls, to DB2® and to return results

Chapter 11. Java Applications Using WebSphere Application Servers 311

with the default tagging. The focus of this approach is to move the data in
and out of the database, and not on shaping the results in a particular way.

SQL-based query does not require the use of DB2 XML Extender, because
there is no user-defined mapping of SQL data to XML elements and attributes.
Instead, the data is returned using only a simple mapping of SQL data types,
using column names as elements.

However, if you are using DB2 XML Extender to store XML documents within
a single column of a table, you can use SQL-based query to retrieve those
documents intact as a character large object (CLOB), or to invoke the
user-defined functions that extract parts of the document. Another feature of
DB2 XML Extender is the ability to store frequently accessed data in side
tables, thereby enabling fast searches on XML documents that are stored in
columns.

Another useful thing you can do with SQL-based query is to invoke DB2
stored procedures. Stored procedures are natural for conversion to Web
services since they are themselves an encapsulation of programming logic and
database access. A Web service invocation of a stored procedure makes it
possible to dynamically provide input parameters and to retrieve results.

Document Access Definition Extension File

Both the XML-based and SQL-based forms of querying are controlled by a
configuration file called a document access definition extension (DADX). The
DADX configuration file defines the operations that can be performed by the
Web service. For example, you might have a DADX file that specifies the
operations to find all orders for parts, find all orders for parts with a
particular color, and orders for parts that are above a certain sepcified price.
(The color or price can be specified at runtime as input parameters by using
host-variable style notation in the query.)

After you create a DADX file, WebSphere Studio Application Developer can
automatically generate the WSDL description of the interfaces, and publish
the interfaces to a UDDI registry or some other service directory. WebSphere
Studio Application Developer will also generate the artifacts needed to deploy
the Web service to a WebSphere Application Server, and generate the client
proxies, which you can use both for testing, and as a basis for building the
client part of your Web application.

Java 2 Platform Enterprise Edition

The sections that follow describe the Java 2 Platform Enterprise Edition (J2EE).

312 Programming Client Applications

Java 2 Platform Enterprise Edition (J2EE) Overview

In today’s global business environment, organizations need to extend their
reach, lower their costs, and lower their response times by providing services
that are easily accessible to their customers, employees, suppliers, and other
business partners. These services need to have the following characteristics:
v Highly available, to meet the requirements of global business environment
v Secure, to protect the privacy of the users and the integrity of the enterprise
v Reliable and scalable, so that business transactions are accurately and

promptly processed

In most cases, these services are provided with the help of multi-tier
applications with each tier serving a specific purpose. The Java™ 2 Platform
Enterprise Edition, reduces the cost and complexity of developing these
multi-tier services, resulting in services that can be rapidly deployed and
easily enhanced based on the requirements of the enterprise.

Java 2 Enterprise Edition achieves these benefits by defining a standard
architecture that is delivered as the following elements:
v Java 2 Enterprise Edition Application Model, a standard application model

for developing multi-tier, thin-client services
v Java 2 Enterprise Edition Platform, a standard platform for hosting Java 2

Enterprise Edition applications
v Java 2 Enterprise Edition Compatibility Test Suite for verifying that a Java 2

Enterprise Edition platform product complies with the Java 2 Enterprise
Edition platform standard

v Java 2 Enterprise Edition Reference Implementation for demonstrating the
capabilities of Java 2 Enterprise Edition, and for providing an operational
definition of the Java 2 Enterprise Edition platform

Related concepts:

v “Java 2 Platform Enterprise Edition” on page 313

Java 2 Platform Enterprise Edition

The Java™ 2 Platform Enterprise Edition provides the runtime environment
for hosting Java 2 Enterprise Edition applications. The runtime environment
defines four application component types that a Java 2 Enterprise Edition
product must support:
v Application clients are Java programming language programs that are

typically GUI programs that execute on a desktop computer. Application
clients have access to all of the facilities of the Java 2 Enterprise Edition
middle tier.

Chapter 11. Java Applications Using WebSphere Application Servers 313

v Applets are GUI components that typically execute in a web browser, but
can execute in a variety of other applications or devices that support the
applet programming model.

v Servlets, JavaServer Pages (JSPs), filters, and web event listeners typically
execute in a web server and may respond to HTTP requests from web
clients. Servlets, JSPs, and filters may be used to generate HTML pages that
are an application’s user interface. They may also be used to generate XML
or other format data that is consumed by other application components.
Servlets, pages created with the JSP technology, web filters, and web event
listeners are referred to collectively in this specification as web components.
Web applications are composed of web components and other data such as
HTML pages.

v Enterprise JavaBeans™ (EJB) components execute in a managed
environment that supports transactions. Enterprise beans typically contain
the business logic for a Java 2 Enterprise Edition application.

The application components listed above can divided into three categories,
based on how they can be deployed and managed:
v Components that are deployed, managed, and executed on a Java 2

Enterprise Edition server.
v Components that are deployed, managed on a Java 2 Enterprise Edition

server, but are loaded to and executed on a client machine.
v Components whose deployment and management are not completely

defined by this specification. Application clients can be under this category.

The runtime support for these components is provided by containers.

Related concepts:

v “Java 2 Platform Enterprise Edition Containers” on page 314
v “Enterprise Java Beans” on page 317

Java 2 Platform Enterprise Edition Containers

A container provides a federated view of the underlying Java™ 2 Platform
Enterprise Edition APIs to the application components. A typical Java 2
Platform Enterprise Edition product will provide a container for each
application component type; application client container, applet container, web
container, and enterprise bean container. The container tools also understand
the file formats for packaging the application components for deployment.

The specification requires that these containers provide a Java-compatible
runtime environment, as defined by the Java 2 Platform Enterprise Edition,
Standard Edition V1.3.1 specification J2SE. This specification defines a set of
standard services that each Java 2 Enterprise Edition product must support.
These standard services are:

314 Programming Client Applications

v HTTP service
v HTTPS service
v Java transaction API
v Remote invocation method
v Java IDL
v JDBC API
v Java message service
v Java naming and directory interface
v JavaMail
v JavaBeans™ activation framework
v Java API for XML parsing
v Connector architecture
v Java authentication and authorization service

Related concepts:

v “Java Naming and Directory Interface (JNDI)” on page 315
v “Enterprise Java Beans” on page 317

Java 2 Platform Enterprise Edition Server

Underlying a Java™ 2 Platform Enterprise Edition container is the server of
which the container is a part. A Java 2 Enterprise Edition Product Provider
typically implements the Java 2 Platform Enterprise Edition server-side
functionality using an existing transaction processing infrastructure in
combination with J2SE technology. The Java 2 Platform Enterprise Edition
client functionality is typically built on J2SE technology.

Note: The IBM WebSphere Application Server is a Java 2 Platform Enterprise
Edition-compliant server.

Java 2 Enterprise Edition Database Requirements

The Java™ 2 Enterprise Edition platform requires a database, accessible
through the JDBC API, for the storage of business data. The database is
accessible from web components, enterprise beans, and application client
components. The database need not be accessible from applets.

Related concepts:

v “Programming Considerations for Java” on page 257

Java Naming and Directory Interface (JNDI)

JNDI enables Java™ platform-based applications to access multiple naming
and directory services. It is a part of the Java Enterprise application
programming interface (API) set. JNDI makes it possible for developers to
create portable applications that are enabled for a number of different naming

Chapter 11. Java Applications Using WebSphere Application Servers 315

and directory services, including: file systems; directory services such as
Lightweight Directory Access Protocol (LDAP), Novell Directory Services, and
Network Information System (NIS); and distributed object systems such as the
Common Object Request Broker Architecture (CORBA), Java Remote Method
Invocation (RMI), and Enterprise JavaBeans™ (EJB).

The JNDI API has two parts: an application-level interface used by the
application components to access naming and directory services and a service
provider interface to attach a provider of a naming and directory service.

Java Transaction Management

Java™ 2 Enterprise Edition simplifies application programming for distributed
transaction management. Java 2 Enterprise Edition includes support for
distributed transactions through two specifications, Java Transaction API and
Java Transaction Service (JTS). JTA is a high-level, implementation-
independent, protocol-independent API that allows applications and
application servers to access transactions. In addition, the JTA is always
enabled.

JTA specifies standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system: the resource manager, the
application server, and the transactional applications.

JTS specifies the implementation of a Transaction Manager which supports
JTA and implements the Java mapping of the OMG Object Transaction Service
(OTS) 1.1 specification at the level below the API. JTS propogates transactions
using IIOP.

JTA and JTS allow application Java 2 Enterprise Edition servers to take the
burden of transaction management off of the component developer.
Developers can define the transactional properties of EJB technology based
components during design or deployment using declarative statements in the
deployment descriptor. The application server takes over the transaction
management responsibilities.

In the DB2® and WebSphere® Application Server environment, WebSphere
Application Server assumes the role of transaction manager, and DB2 acts as a
resource manager. WebSphere Application Server implements JTS and part of
JTA, and DB2 JDBC driver also implements part of JTA so that WebSphere
and DB2 can provide coordinated distributed transactions.

Note: It is not necessary to configure DB2 to be JTA enabled in the
WebSphere environment because the DB2 JDBC driver automatically
detects this environment. Currently JTA support is only provided in the
DB2 JDBC Type 2 driver.

316 Programming Client Applications

DB2 JDBC driver provides two DataSource classes:
v COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource
v COM.ibm.db2.jdbc.DB2XADataSource

WebSphere Application Server provides pooled DB2 connections to databases.
If the application will be involved in a distributed transaction, the
COM.ibm.db2.jdbc.DB2XADataSource class should be used when defining DB2
data sources within the WebSphere Application Server.

For the detail information about how to configure the WebSphere Application
Server with DB2, refer to WebSphere Application Server InfoCenter at:
http://www-4.ibm.com/software/webservers/appserv/library.html

Enterprise Java Beans

The Enterprise Java™ beans architecture is component architecture for the
development and deployment of component-based distributed business
applications. Applications written using the Enterprise Java beans architecture
is scalable, transactional, and multi-user secure. These applications may be
written once, and then deployed on any server platform that supports the
Enterprise Java beans specification. Java 2 Enterprise Edition applications
implement server-side business components using Enterprise Java beans
(EJBs) that include session beans and entity beans.

Session beans represent the business services and are not shared between
users. Entity beans are multi-user, distributed transactional objects
representing persistent data. The transactional boundaries of a EJB application
can be set by specifying either container-managed or bean-managed
transactions

The EJB sample application provides two business services. One service
allows the user to access information about an employee (which is stored in
the EMPLOYEE table of the sample database) via that employee’s employee
number. The other service allows the user to retrieve a list of the employee
numbers, so that the user can obtain an employee number to use for querying
employee data.

The following sample uses EJBs to implement a Java 2 Enterprise Edition
application to access DB2 database. The sample utilizes the
Model-View-Controller (MVC) architecture. The JSP is used to implement the
View (the presentation component). A servlet acts as the controller in the
sample. It controls the workflow and delegates the user’s request to the Model
that is implemented using Enterprise Java beans. The Model component of the
sample consists of two EJBs, one session bean and one entity bean. The CMP
entity bean, Employee, represent the distributed transactional objects that
representing the persistent data in EMPLOYEE table of the sample database.

Chapter 11. Java Applications Using WebSphere Application Servers 317

The purpose to use container-managed persistence (CMP) bean is to show
how easy it is on development. The term container-managed persistence
means that the EJB container handles all database access required by the
entity bean. The bean’s code contains no database access (SQL) calls. As a
result, the bean’s code is not tied to a specific persistent storage mechanism
(database). Because of this flexibility, even if you redeploy the same entity
bean on different Java 2 Enterprise Edition servers that use different
databases. The session bean, AccessEmployee, acts as the Façade of the entity
bean and provides provide a uniform client access strategy. This Façade
design reduces the network traffic between the EJB client and the entity bean
and make more efficient in distributed transaction than that when the EJB
client access the entity bean directly. The access to DB2 database can be
provided from Session bean or Entity bean. The two services of the sample
application demonstrate both approaches to access DB2 database according to
the characteristics of the services. In the Service one, Entity bean is used:
//==
// This method returns an employee’s information by
// interactive with the entity bean located by the
// provided employee number
public EmployeeInfo getEmployeeInfo(String empNo)
throws java.rmi.RemoteException
}
Employee employee = null;
try
}
employee = employeeHome.findByPrimaryKey(new EmployeeKey(empNo));
EmployeeInfo empInfo = new EmployeeInfo(empNo);
//set the employee’s information to the dependent value object
empInfo.setEmpno(employee.getEmpno());
empInfo.setFirstName (employee.getFirstName());
empInfo.setMidInit(employee.getMidInit());
empInfo.setLastName(employee.getLastName());
empInfo.setWorkDept(employee.getWorkDept());
empInfo.setPhoneNo(employee.getPhoneNo());
empInfo.setHireDate(employee.getHireDate());
empInfo.setJob(employee.getJob());
empInfo.setEdLevel(employee.getEdLevel());
empInfo.setSex(employee.getSex());
empInfo.setBirthDate(employee.getBirthDate());
empInfo.setSalary(employee.getSalary());
empInfo.setBonus(employee.getBonus());
empInfo.setComm(employee.getComm());
return empInfo;
}
catch (java.rmi.RemoteException rex)
{
......

318 Programming Client Applications

The one line of code is needed to access DB2 database. In the service of
displaying employee numbers, the Session bean, AccessEmployee, directly
accesses DB2 sample database.
/===
* Get the employee number list.
* @return Collection
*/
public Collection getEmpNoList()
{
ResultSet rs = null;
PreparedStatement ps = null;
Vector list = new Vector();
DataSource ds = null;
Connection con = null;
try
{
ds = getDataSource();
con = ds.getConnection();
String schema = getEnvProps(DBschema);
String query = "Select EMPNO from " + schema + ".EMPLOYEE";
ps = con.prepareStatement(query);
ps.executeQuery();
rs = ps.getResultSet();
EmployeeKey pk;
while (rs.next())
{
pk = new EmployeeKey();
pk.employeeId = rs.getString(1);
list.addElement(pk.employeeId);
}
rs.close();
return list;

The sample program AccessEmployee.ear uses Enterprise Java beans to
implement a Java 2 Enterprise Edition application to access DB2 database. You
can find this sample in the SQLLIB/samples/websphere directory.

Related reference:

v “Java WebSphere Samples” in the Application Development Guide: Building
and Running Applications

WebSphere

The sections that follow describe WebSphere connection pooling and
statement caching.

Connections to Enterprise Data

With companies relying more and more on their stored data there is a need to
have it all on large systems such as the zSeries™ servers. With this new need
for consolidation, Web applications need ways to get to the enterprise data.

Chapter 11. Java Applications Using WebSphere Application Servers 319

DB2® Connect gives a Windows® or UNIX-based applications the ability to
connect to and use the data stored on these large systems. DB2 also provides
its own set of features such as connection pooling, and the connection
concentrator.

WebSphere Connection Pooling and Data Sources
Each time a resource attempts to access a database, it must connect to that
database. A database connection incurs overhead; it requires resources to
create the connection, maintain it, and then release it when it is no longer
required.

Note: The information provided here refers to Version 4 of the WebSphere
Application Server for UNIX, LINUX, and Windows.

The total database overhead for an application is particularly high for
Web-based applications because Web users connect and disconnect more
frequently. In addition, user interactions are typically shorter, because of the
nature of the Internet. Often, more effort is spent connecting and
disconnecting than is spent during the interactions themselves. Further,
because Internet requests can arrive from virtually anywhere, usage volumes
can be large and difficult to predict.

IBM® WebSphere® Application Server enables administrators to establish a
pool of database connections that can be shared by applications on an
application server to address these overhead problems.

Connection pooling spreads the connection overhead across several user
requests, thereby conserving resources for future requests.

You can either use WebSphere connection pooling, or you can use the DB2®

connection pooling support that is provided by the JDBC 2.1 Optional
Package API to establish the connection pool.

WebSphere connection pooling is the implementation of the JDBC 2.1 Optional
Package API specification. Therefore, the connection pooling programming
model is as specified in the JDBC 2.1 Core and JDBC 2.1 Optional Package
API specifications. This means that applications obtaining their connections
through a datasource created in WebSphere Application Server can benefit
from JDBC 2.1 features such as pooling of connections and JTA-enabled
connections.

In addition, WebSphere connection pooling provides additional features that
enable administrators to tune the pool for best performance and provide
applications with WebSphere exceptions that enable programmers to write
applications without knowledge of common vendor-specific SQLExceptions.
Not all vendor-specific SQLExceptions are mapped to WebSphere exceptions;

320 Programming Client Applications

applications must still be coded to deal with vendor-specific SQLExceptions.
However, the most common, recoverable exceptions are mapped to
WebSphere exceptions.

The datasource obtained through WebSphere is a datasource that implements
the JDBC 2.1 Optional Package API. It provides pooling of connections and,
depending on the vendor-specific datasource selected, may provide
connections capable of participating in two-phase commit protocol
transactions (JTA-enabled).

The AccessEmployee program in the AccessEmployee.ear file uses the
WebSphere DataSource to access a DB2 database.

Related concepts:

v “JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 2 Driver” on page
272

v “JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 2 Driver”
on page 273

Related reference:

v “Java WebSphere Samples” in the Application Development Guide: Building
and Running Applications

Parameters for Tuning WebSphere Connection Pools

Performance improvements can be made by correctly tuning the parameters
on the connection pool. This section details each of the properties found on
the Connection Pooling tab and how they can be tuned for optimal
performance.

The following properties can be found on both the Connection Pooling tab of
the data source creation window, and on the Connection Pooling tab of the
data source properties window:

Minimum Pool Size
The minimum number of connections that the connection pool can
hold. By default, this value is 1. Any non-negative integer is a valid
value for this property. The minimum pool size can affect the
performance of an application. Smaller pools require less overhead
when the demand is low because fewer connections are being held
open to the database. On the other hand, when the demand is high,
the first applications will experience a slow response because new
connections will have to be created if all others in the pool are in use.

Maximum Pool Size
The maximum number of connections the connection pool can hold.
By default, this value is 10. Any positive integer is a valid value for

Chapter 11. Java Applications Using WebSphere Application Servers 321

this property. The maximum pool size can affect the performance of
an application. Larger pools require more overhead when demand is
high because there are more connections open to the database at peak
demand. These connections persist until they are idled out of the pool.
On the other hand, if the maximum is smaller, there might be longer
wait times or possible connection timeout errors during peak times.
The database must be able to support the maximum number of
connections in the application server in addition to any load that it
may have outside of the application server.

Connection Timeout
The maximum number of seconds that an application waits for a
connection from the pool before timing out and throwing a
ConnectionWaitTimeoutException to the application. The default value
is 180 seconds (3 minutes). Any non-negative integer is a valid value
for this property. Setting this value to 0 disables the connection
timeout.

Idle Timeout
The number of seconds that a connection can remain free in the pool
before the connection is removed from the pool. The default value is
1800 seconds (30 minutes). Any non-negative integer is a valid value
for this property. Connections need to be idled out of the pool because
keeping connections open to the database can cause memory
problems with the database. However, not all connections are idled
out of the pool, even if they are older than the Idle Timeout setting. A
connection is not idled if removing the connection would cause the
pool to shrink below its minimum size. Setting this value to 0 disables
the idle timeout.

Orphan Timeout
The number of seconds that an application is allowed to hold an
inactive connection. The default is 1800 seconds (30 minutes). Any
non-negative integer is a valid value for this property. If there has
been no activity on an allocated connection for longer than the
Orphan Timeout setting, the connection is marked for orphaning.
After another Orphan Timeout number of seconds, if the connection
still has had no activity, the connection is returned to the pool. If the
application tries to use the connection again, it is thrown a
StaleConnectionException. Connections that are enlisted in a
transaction are not orphaned. Setting this value to 0 disables the
orphan timeout.

Statement Cache Size
The number of cached prepared statements to keep for an entire
connection pool. The default value is 100. Any non-negative integer is
a valid value for this property. When a statement is cached, it helps
performance, because a statement is retrieved from the cache if a

322 Programming Client Applications

matching statement is found, instead of creating a new prepared
statement (a more costly operation). The statement cache size does not
change the programming model, only the performance of the
application. The statement cache size is the number of cached
statements for the entire pool, not for each connection. Setting the
statement cache size in the administrative console is a new option in
Version 4.0. In previous versions, this value could be set only by using
a datasources.xml file. Use of datasources.xml has been deprecated in
Version 4.0.

Disable Auto Connection Cleanup
Whether or not the connection is closed at the end of a transaction.
The default is false, which indicates that when a transaction is
completed, WebSphere® closes the connection and returns it to the
pool. This means that any use of the connection after the transaction
has ended results in a StaleConnectionException, because the
connection has been closed and returned to the pool. This mechanism
ensures that connections are not held indefinitely by the application. If
the value is set to true, the connection is not returned to the pool at
the end of a transaction. In this case, the application must return the
connection to the pool by calling close(). If the application does not
close the connection, the pool can run out of connections for other
applications to use.

Each of these configurable parameters can determine how the resources are
used in each pool. The most important two parameters are the Minimum Pool
Size are the Maximum Pool Size. Below are some more in depth definitions
and suggested uses of these two parameters:

Minimum Pool Size
The minimum number of connections that the connection pool can
hold open to the database. The default value is 1. In versions 3.5 and
4.0, the pool does not create the minimum number of connections to
the database up front. Instead, as additional connections are needed,
new connections to the database are created, growing the pool. After
the pool has grown to the minimum number of connections, it does
not shrink below the minimum.

The correct minimum value for the pool can be determined by
examining the applications that are using the pool. If it is determined,
for example, that at least four connections are needed at any point in
time, the minimum number of connections should be set to 4 to
ensure that all requests can be fulfilled without connection wait
timeout exceptions. At off-peak times, the pool shrinks back to this
minimum number of connections. A good rule of thumb is to keep
this number as small as possible to avoid holding connections
unnecessarily open.

Chapter 11. Java Applications Using WebSphere Application Servers 323

Maximum Pool Size
The maximum number of connections that the connection pool can
hold open to the database. The pool holds this maximum number of
connections open to the database at peak times. At off-peak times, the
pool shrinks back to the minimum number of connections.

The best practice is to ensure that only one connection is required on
a thread at any time. This avoids possible deadlocks when the pool is
at maximum capacity and no connections are left to fulfill a
connection request. Therefore, with one connection per thread, the
maximum pool size can be set to the maximum number of threads.

When using servlets, this can be determined by looking at the
MaxConnections property in the Servlet Engine. If multiple connections
are required on a thread, the maximum pool size value can be
determined using the following formula:
T *(C -1)+1

Where T is the number of threads, and C is the number of
connections.

The other tuning parameters are very application specific when used for
tuning. In each case it is very important to know roughly how long the
average application will use a connection in the pool. For example, if all
applications using a connection pool are know to only hold a connection for
an average time of 5 seconds, with a maximum of 10 seconds, it may be
useful to have an Orphan Timeout value of 10 or 15 seconds, but be prepared
for the occasional StaleConnectionException.

Deliberately orphaning connections is not something that is recommended,
however it may be useful it some problem determination scenarios where
connections are being held for long periods of time when it is known that the
application should only need a connection for a short period.

The Idle Timeout period is a very useful parameter if you are using a resource
strapped machine. If you have set your maximum and minimum connection
pool sizes properly, you may want to lower the Idle Timeout so that when
usage of the pool is low, there are not connections sitting open that are not
doing anything. Be very careful in how low to set this parameter though since
setting it to low will introduce the cost of creating connections to more
applications when a transformation from light load to heavy load begins.

Finally the Connection Timeout can be use to ensure that applications are not
waiting around for ever for a connection. If all applications using a pool are
know to only use connections for a few seconds, then it may be useful to
reduce this parameter as well, however, don’t the default for this parameter is
quite low for heavily loaded systems to start with. For example, if most of the

324 Programming Client Applications

applications using a pool are known to use a connection for at least 10
seconds (long running queries), then when this system is under load it is
possible that the applications get backed up behind one another waiting for
connections in the pool. The further back in line an application is the higher
the chances are that it will get a Connection Timeout. Please note that this is a
rare case, since not too many web applications have long running queries that
a lot of users would be trying to access at the same time. Also note that if
Minimum and Maximum connection pool size parameters are changed, you
may no longer have the backup problem.

As in the last example it is important to consider all tuning parameters when
tuning your system. Just changing the minimum and maximum pool size may
give you a throughput and performance boost, but it may not help with
resource contention if some of the other parameters are set improperly for the
system.

As with most tuning, it is a good idea to try different settings and see what
works best for your system

Benefits of WebSphere Connection Pooling

Connection pooling can improve the response time of any application that
requires connections, especially Web-based applications.

When a user makes a request over the Web to a resource, the resource
accesses a datasource. Most user requests do not incur the overhead of
creating a new connection, because the datasource might locate and use an
existing connection from the pool of connections. When the request is satisfied
and the response is returned to the user, the resource returns the connection to
the connection pool for reuse. Again, the overhead of a disconnect is avoided.

Each user request incurs a fraction of the cost of connection or disconnecting.
After the initial resources are used to produce the connections in the pool,
additional overhead is insignificant because the existing connections are
reused.

Caching of prepared statements is another mechanism by which WebSphere®

connection pooling improves Web-based application response times.

A cache of previously prepared statements is available on a connection. When
a new prepared statement is requested on a connection, the cached prepared
statement is returned if available. This caching reduces the number of costly
prepared statements created, which improves response times. The cache is
useful for applications that tend to prepare the same statement time and
again.

Chapter 11. Java Applications Using WebSphere Application Servers 325

In addition to improved response times, WebSphere connection pooling
provides a layer of abstraction from the database which can buffer the client
application and make different databases appear to work in the same manner
to an application

This buffering makes it easier to switch application databases, because the
application code does not have to deal with common vendor-specific
SQLExceptions but, rather, with a WebSphere connection pooling exception.

Statement Caching in WebSphere

WebSphere® provides a mechanism for caching previously prepared
statements. Caching prepared statements improves response times, because an
application can reuse a PreparedStatement on a connection if it exists in that
connection’s cache, bypassing the need to create a new PreparedStatement.

When an application creates a PreparedStatement on a connection, the
connection’s cache is first searched to determine if a PreparedStatement with
the same SQL string already exists. This search is done by using the entire
string of SQL statements in the prepareStatement() method. If a match is
found, the cached PreparedStatement is returned for use. If it is not, a new
PreparedStatement is created and returned to the application.

As the prepared statements are closed by the application, they are returned to
the connection’s cache of statements. By default, only 100 prepared statements
can be kept in cache for the entire pool of connections. For example, if there
are ten connections in the pool, the number of cached prepared statements for
those ten connections cannot exceed 100. This ensures that a limited number
of prepared statements are concurrently open to the database, which helps to
avoid resource problems with a database.

Elements are removed from the connection’s cache of prepared statements
only when the number of currently cached prepared statements exceeds the
statementCacheSize (by default 100). If a prepared statement needs to be
removed from the cache, it is removed and added to a vector of discarded
statements. As soon as the method in which the prepared statement was
removed has ended, the prepared statements on the discarded statements
vector are closed to the database. Therefore, at any given time, there might be
100 plus the number of recently discarded statements open to the database.
The extra prepared statements are closed after the method ends.

The number of prepared statements to be cached is configurable at the data
source. Each cache should be tuned according to the application’s
requirements for prepared statements.

326 Programming Client Applications

Part 4. Other Programming Interfaces

© Copyright IBM Corp. 1993-2002 327

328 Programming Client Applications

Chapter 12. Programming in Perl

Programming Considerations for Perl . . . 329
Perl Restrictions 329
Multiple-Thread Database Access in Perl . . 329
Database Connections in Perl 330

Fetching Results in Perl 330
Parameter Markers in Perl 331
SQLSTATE and SQLCODE Variables in Perl 331
Example of a Perl Program 332

Programming Considerations for Perl

Perl is a popular programming language that is freely available for many
operating systems. Using the DBD::DB2 driver available from
http://www.ibm.com/software/data/db2/perl with the Perl Database
Interface (DBI) Module available from http://www.perl.com, you can create
DB2® applications using Perl.

Because Perl is an interpreted language and the Perl DBI Module uses
dynamic SQL, Perl is an ideal language for quickly creating and revising
prototypes of DB2 applications. The Perl DBI Module uses an interface that is
quite similar to the CLI and JDBC interfaces, which makes it easy for you to
port your Perl prototypes to CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI Module,
which means that you can also use Perl to create applications that access data
from many different database servers. For example, you can write a Perl DB2
application that connects to an Oracle database using the DBD::Oracle
database driver, fetch data from the Oracle database, and insert the data into a
DB2 database using the DBD::DB2 database driver.

Perl Restrictions

The Perl DBI module supports only dynamic SQL. When you need to execute
a statement multiple times, you can improve the performance of your Perl
DB2® applications by issuing a prepare call to prepare the statement.

For current information on the restrictions of the version of the DBD::DB2
driver that you install on your workstation, refer to the CAVEATS file in the
DBD::DB2 driver package.

Multiple-Thread Database Access in Perl

Perl does not support multiple-thread database access.

© Copyright IBM Corp. 1993-2002 329

Database Connections in Perl

To enable Perl to load the DBI module, you must include the following line in
your DB2® application:

use DBI;

The DBI module automatically loads the DBD::DB2 driver when you create a
database handle using the DBI->connect statement with the following syntax:

my $dbhandle = DBI->connect(‘dbi:DB2:dbalias’, $userID, $password);

where:

$dbhandle
represents the database handle returned by the connect statement

dbalias
represents a DB2 alias cataloged in your DB2 database directory

$userID
represents the user ID used to connect to the database

$password
represents the password for the user ID used to connect to the
database

Fetching Results in Perl

Because the Perl DBI Module only supports dynamic SQL, you do not use
host variables in your Perl DB2 applications.

Procedure:

To return results from an SQL query, perform the following steps:
1. Create a database handle by connecting to the database with the

DBI->connect statement.
2. Create a statement handle from the database handle. For example, you can

call prepare with an SQL statement as a string argument to return
statement handle $sth from the database handle, as demonstrated in the
following Perl statement:

my $sth = $dbhandle->prepare(
’SELECT firstnme, lastname

FROM employee ’
);

3. Execute the SQL statement by calling execute on the statement handle. A
successful call to execute associates a result set with the statement handle.

330 Programming Client Applications

For example, you can execute the statement prepared in the previous
example using the following Perl statement:

#Note: $rc represents the return code for the execute call
my $rc = $sth->execute();

4. Fetch a row from the result set associated with the statement handle with
a call to fetchrow(). The Perl DBI returns a row as an array with one
value per column. For example, you can return all of the rows from the
statement handle in the previous example using the following Perl
statement:

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme $lastname\n";

}

Related concepts:

v “Database Connections in Perl” on page 330

Parameter Markers in Perl

To enable you to execute a prepared statement using different input values for
specified fields, the Perl DBI module enables you to prepare and execute a
statement using parameter markers. To include a parameter marker in an SQL
statement, use the question mark (?) character.

The following Perl code creates a statement handle that accepts a parameter
marker for the WHERE clause of a SELECT statement. The code then executes
the statement twice using the input values 25000 and 35000 to replace the
parameter marker.

my $sth = $dbhandle->prepare(
’SELECT firstnme, lastname

FROM employee
WHERE salary > ?’

);

my $rc = $sth->execute(25000);

...
my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE Variables in Perl

To return the SQLSTATE associated with a Perl DBI database handle or
statement handle, call the state method. For example, to return the
SQLSTATE associated with the database handle $dbhandle, include the
following Perl statement in your application:

my $sqlstate = $dbhandle->state;

Chapter 12. Programming in Perl 331

To return the SQLCODE associated with a Perl DBI database handle or
statement handle, call the err method. To return the message for an
SQLCODE associated with a Perl DBI database handle or statement handle,
call the errstr method. For example, to return the SQLCODE associated with
the database handle $dbhandle, include the following Perl statement in your
application:

my $sqlcode = $dbhandle->err;

Example of a Perl Program

Following is an example of an application written in Perl:
#!/usr/bin/perl
use DBI;

my $database=’dbi:DB2:sample’;
my $user=’’;
my $password=’’;

my $dbh = DBI->connect($database, $user, $password)
or die "Can’t connect to $database: $DBI::errstr";

my $sth = $dbh->prepare(
q{ SELECT firstnme, lastname

FROM employee }
)
or die "Can’t prepare statement: $DBI::errstr";

my $rc = $sth->execute
or die "Can’t execute statement: $DBI::errstr";

print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";
print "$sth->{NAME}->[0]: $sth->{NAME}->[1]\n";

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme: $lastname\n";

}

check for problems which may have terminated the fetch early
warn $DBI::errstr if $DBI::err;

$sth->finish;
$dbh->disconnect;

332 Programming Client Applications

Chapter 13. Programming in REXX

Programming Considerations for REXX . . 333
Language Restrictions for REXX 334

Language Restrictions for REXX 334
Registering SQLEXEC, SQLDBS and
SQLDB2 in REXX 334
Multiple-Thread Database Access in
REXX 335
Japanese or Traditional Chinese EUC
Considerations for REXX 336

Embedded SQL in REXX Applications . . . 336
Host Variables in REXX 338

Host Variables in REXX 338
Host Variable Names in REXX 339
Host Variable References in REXX . . . 339
Indicator Variables in REXX 339
Predefined REXX Variables. 339
LOB Host Variables in REXX 341
Syntax for LOB Locator Declarations in
REXX 342

Syntax for LOB File Reference
Declarations in REXX 343
LOB Host Variable Clearing in REXX . . 344
Cursors in REXX 344

Supported SQL Data Types in REXX . . . 345
Execution Requirements for REXX 347

Building and Running REXX Applications 347
Bind Files for REXX 348

API Syntax for REXX 349
Calling Stored Procedures from REXX . . . 350

Stored Procedures in REXX 350
Stored Procedure Calls in REXX 351
Client Considerations for Calling Stored
Procedures in REXX 352
Server Considerations for Calling Stored
Procedures in REXX 352
Retrieval of Precision and SCALE Values
from SQLDA Decimal Fields 353

Programming Considerations for REXX

Special host-language programming considerations are discussed in the
following sections. Included is information on embedding SQL statements,
language restrictions, and supported data types for host variables.

Note: REXX support stabilized in DB2 Version 5, and no enhancements for
REXX support are planned for the future. For example, REXX cannot
handle SQL object identifiers, such as table names, that are longer than
18 bytes. To use features introduced to DB2 after Version 5, such as
table names from 19 to 128 bytes long, you must write your
applications in a language other than REXX.

Because REXX is an interpreted language, no precompiler, compiler, or linker
is used. Instead, three DB2 APIs are used to create DB2 applications in REXX.
Use these APIs to access different elements of DB2.

SQLEXEC
Supports the SQL language.

SQLDBS
Supports command-like versions of DB2 APIs.

© Copyright IBM Corp. 1993-2002 333

SQLDB2
Supports a REXX specific interface to the command-line processor. See
the description of the API syntax for REXX for details and restrictions
on how this interface can be used.

Related concepts:

v “API Syntax for REXX” on page 349

Language Restrictions for REXX

The sections that follow describe the language restrictions for REXX.

Language Restrictions for REXX

It is possible that tokens within statements or commands that are passed to
the SQLEXEC, SQLDBS, and SQLDB2 routines could correspond to REXX
variables. In this case, the REXX interpreter substitutes the variable’s value
before calling SQLEXEC, SQLDBS, or SQLDB2.

To avoid this situation, enclose statement strings in quotation marks (’ ’ or ″
″). If you do not use quotation marks, any conflicting variable names are
resolved by the REXX interpreter, instead of being passed to the SQLEXEC,
SQLDBS or SQLDB2 routines.

Compound SQL is not supported in REXX/SQL.

REXX/SQL stored procedures are supported on Windows® operating systems,
but not on AIX.

Related tasks:

v “Registering SQLEXEC, SQLDBS and SQLDB2 in REXX” on page 334

Registering SQLEXEC, SQLDBS and SQLDB2 in REXX

Before using any of the DB2 APIs or issuing SQL statements in an application,
you must register the SQLDBS, SQLDB2 and SQLEXEC routines. This notifies
the REXX interpreter of the REXX/SQL entry points. The method you use for
registering varies slightly between Windows-based and AIX platforms.

Procedure:

Use the following examples for correct syntax for registering each routine:

Sample registration on Windows-based platforms

334 Programming Client Applications

/* ------------ Register SQLDBS with REXX -------------------------*/
If Rxfuncquery('SQLDBS') <> 0 then

rcy = Rxfuncadd('SQLDBS','DB2AR','SQLDBS')
If rcy \= 0 then

do
say ’SQLDBS was not successfully added to the REXX environment’
signal rxx_exit

end

/* ------------ Register SQLDB2 with REXX -------------------------*/
If Rxfuncquery('SQLDB2') <> 0 then

rcy = Rxfuncadd('SQLDB2','DB2AR','SQLDB2')
If rcy \= 0 then

do
say ’SQLDB2 was not successfully added to the REXX environment’
signal rxx_exit

end

/* ----------------- Register SQLEXEC with REXX --------------------*/
If Rxfuncquery('SQLEXEC') <> 0 then

rcy = Rxfuncadd('SQLEXEC','DB2AR','SQLEXEC')
If rcy \= 0 then

do
say ’SQLEXEC was not successfully added to the REXX environment’
signal rxx_exit

end

Sample registration on AIX
/* ------------ Register SQLDBS, SQLDB2 and SQLEXEC with REXX --------*/
rcy = SysAddFuncPkg("db2rexx")
If rcy \= 0 then

do
say ’db2rexx was not successfully added to the REXX environment’
signal rxx_exit

end

On Windows-based platforms, the RxFuncAdd commands need to be
executed only once for all sessions.

On AIX, the SysAddFuncPkg should be executed in every REXX/SQL
application.

Details on the RXfuncadd and SysAddFuncPkg APIs are available in the
REXX documentation for Windows-based platforms and AIX, respectively.

Multiple-Thread Database Access in REXX

REXX does not support multiple-thread database access.

Chapter 13. Programming in REXX 335

Japanese or Traditional Chinese EUC Considerations for REXX

REXX applications are not supported under Japanese or Traditional Chinese
EUC environments.

Embedded SQL in REXX Applications

REXX applications use APIs that enable them to use most of the features
provided by database manager APIs and SQL. Unlike applications written in a
compiled language, REXX applications are not precompiled. Instead, a
dynamic SQL handler processes all SQL statements. By combining REXX with
these callable APIs, you have access to most of the database manager
capabilities. Although REXX does not directly support some APIs using
embedded SQL, they can be accessed using the DB2® command line processor
from within the REXX application.

As REXX is an interpretive language, you may find it is easier to develop and
debug your application prototypes in REXX as compared to compiled host
languages. Although DB2 applications coded in REXX do not provide the
performance of DB2 applications that use compiled languages, they do
provide the ability to create DB2 applications without precompiling,
compiling, linking, or using additional software.

Use the SQLEXEC routine to process all SQL statements. The character string
arguments for the SQLEXEC routine are made up of the following elements:
v SQL keywords
v Pre-declared identifiers
v Statement host variables

Make each request by passing a valid SQL statement to the SQLEXEC routine.
Use the following syntax:

CALL SQLEXEC 'statement'

SQL statements can be continued onto more than one line. Each part of the
statement should be enclosed in single quotation marks, and a comma must
delimit additional statement text as follows:

CALL SQLEXEC 'SQL text',
'additional text',

.

.

.
'final text'

The following is an example of embedding an SQL statement in REXX:

336 Programming Client Applications

statement = "UPDATE STAFF SET JOB = ’Clerk’ WHERE JOB = ’Mgr’"
CALL SQLEXEC ’EXECUTE IMMEDIATE :statement’
IF (SQLCA.SQLCODE < 0) THEN

SAY ’Update Error: SQLCODE = ’ SQLCA.SQLCODE

In this example, the SQLCODE field of the SQLCA structure is checked to
determine whether the update was successful.

The following rules apply to embedded SQL statements:
v The following SQL statements can be passed directly to the SQLEXEC

routine:
– CALL
– CLOSE
– COMMIT
– CONNECT
– CONNECT TO
– CONNECT RESET
– DECLARE
– DESCRIBE
– DISCONNECT
– EXECUTE
– EXECUTE IMMEDIATE
– FETCH
– FREE LOCATOR
– OPEN
– PREPARE
– RELEASE
– ROLLBACK
– SET CONNECTION

Other SQL statements must be processed dynamically using the EXECUTE
IMMEDIATE, or PREPARE and EXECUTE statements in conjunction with
the SQLEXEC routine.

v You cannot use host variables in the CONNECT and SET CONNECTION
statements in REXX.

v Cursor names and statement names are predefined as follows:

c1 to c100
Cursor names, which range from c1 to c50 for cursors declared
without the WITH HOLD option, and c51 to c100 for cursors
declared using the WITH HOLD option.

The cursor name identifier is used for DECLARE, OPEN, FETCH,
and CLOSE statements. It identifies the cursor used in the SQL
request.

Chapter 13. Programming in REXX 337

s1 to s100
Statement names, which range from s1 to s100.

The statement name identifier is used with the DECLARE,
DESCRIBE, PREPARE, and EXECUTE statements.

The pre-declared identifiers must be used for cursor and statement names.
Other names are not allowed.

v When declaring cursors, the cursor name and the statement name should
correspond in the DECLARE statement. For example, if c1 is used as a
cursor name, s1 must be used for the statement name.

v Do not use comments within an SQL statement.

Host Variables in REXX

The sections that follow describe how to declare and use host variables in
REXX programs.

Host Variables in REXX

Host variables are REXX language variables that are referenced within SQL
statements. They allow an application to pass input data to DB2 and receive
output data from DB2. REXX applications do not need to declare host
variables, except for LOB locators and LOB file reference variables. Host
variable data types and sizes are determined at run time when the variables
are referenced. The sections that follow describe the rules to follow when
naming and using host variables.

Related concepts:

v “Host Variable Names in REXX” on page 339
v “Host Variable References in REXX” on page 339
v “Indicator Variables in REXX” on page 339
v “LOB Host Variables in REXX” on page 341
v “LOB Host Variable Clearing in REXX” on page 344

Related reference:

v “Predefined REXX Variables” on page 339
v “Syntax for LOB Locator Declarations in REXX” on page 342
v “Syntax for LOB File Reference Declarations in REXX” on page 343
v “Supported SQL Data Types in REXX” on page 345

338 Programming Client Applications

Host Variable Names in REXX

Any properly named REXX variable can be used as a host variable. A variable
name can be up to 64 characters long. Do not end the name with a period. A
host variable name can consist of alphabetic characters, numerics, and the
characters @, _, !, ., ?, and $.

Host Variable References in REXX

The REXX interpreter examines every string without quotation marks in a
procedure. If the string represents a variable in the current REXX variable
pool, REXX replaces the string with the current value. The following is an
example of how you can reference a host variable in REXX:

CALL SQLEXEC ’FETCH C1 INTO :cm’
SAY ’Commission = ’ cm

To ensure that a character string is not converted to a numeric data type,
enclose the string with single quotation marks as in the following example:

VAR = ’100’

REXX sets the variable VAR to the 3-byte character string 100. If single
quotation marks are to be included as part of the string, follow this example:

VAR = "’100’"

When inserting numeric data into a CHARACTER field, the REXX interpreter
treats numeric data as integer data, thus you must concatenate numeric
strings explicitly and surround them with single quotation marks.

Indicator Variables in REXX

An indicator variable data type in REXX is a number without a decimal point.
Following is an example of an indicator variable in REXX using the
INDICATOR keyword.

CALL SQLEXEC ’FETCH C1 INTO :cm INDICATOR :cmind’
IF (cmind < 0)

SAY ’Commission is NULL’

In the above example, cmind is examined for a negative value. If it is not
negative, the application can use the returned value of cm. If it is negative, the
fetched value is NULL and cm should not be used. The database manager
does not change the value of the host variable in this case.

Predefined REXX Variables

SQLEXEC, SQLDBS, and SQLDB2 set predefined REXX variables as a result of
certain operations. These variables are:

Chapter 13. Programming in REXX 339

RESULT
Each operation sets this return code. Possible values are:

n Where n is a positive value indicating the number of bytes in
a formatted message. The GET ERROR MESSAGE API alone
returns this value.

0 The API was executed. The REXX variable SQLCA contains
the completion status of the API. If SQLCA.SQLCODE is not
zero, SQLMSG contains the text message associated with that
value.

–1 There is not enough memory available to complete the API.
The requested message was not returned.

–2 SQLCA.SQLCODE is set to 0. No message was returned.

–3 SQLCA.SQLCODE contained an invalid SQLCODE. No
message was returned.

–6 The SQLCA REXX variable could not be built. This indicates
that there was not enough memory available or the REXX
variable pool was unavailable for some reason.

–7 The SQLMSG REXX variable could not be built. This indicates
that there was not enough memory available or the REXX
variable pool was unavailable for some reason.

–8 The SQLCA.SQLCODE REXX variable could not be fetched
from the REXX variable pool.

–9 The SQLCA.SQLCODE REXX variable was truncated during
the fetch. The maximum length for this variable is 5 bytes.

–10 The SQLCA.SQLCODE REXX variable could not be converted
from ASCII to a valid long integer.

–11 The SQLCA.SQLERRML REXX variable could not be fetched
from the REXX variable pool.

–12 The SQLCA.SQLERRML REXX variable was truncated during
the fetch. The maximum length for this variable is 2 bytes.

–13 The SQLCA.SQLERRML REXX variable could not be
converted from ASCII to a valid short integer.

–14 The SQLCA.SQLERRMC REXX variable could not be fetched
from the REXX variable pool.

–15 The SQLCA.SQLERRMC REXX variable was truncated during
the fetch. The maximum length for this variable is 70 bytes.

–16 The REXX variable specified for the error text could not be
set.

340 Programming Client Applications

–17 The SQLCA.SQLSTATE REXX variable could not be fetched
from the REXX variable pool.

–18 The SQLCA.SQLSTATE REXX variable was truncated during
the fetch. The maximum length for this variable is 2 bytes.

Note: The values –8 through –18 are returned only by the GET
ERROR MESSAGE API.

SQLMSG
If SQLCA.SQLCODE is not 0, this variable contains the text message
associated with the error code.

SQLISL
The isolation level. Possible values are:
RR Repeatable read.
RS Read stability.
CS Cursor stability. This is the default.
UR Uncommitted read.
NC No commit. (NC is only supported by some host, AS/400, or

iSeries servers.)

SQLCA
The SQLCA structure updated after SQL statements are processed and
DB2 APIs are called.

SQLRODA
The input/output SQLDA structure for stored procedures invoked
using the CALL statement. It is also the output SQLDA structure for
stored procedures invoked using the Database Application Remote
Interface (DARI) API.

SQLRIDA
The input SQLDA structure for stored procedures invoked using the
Database Application Remote Interface (DARI) API.

SQLRDAT
An SQLCHAR structure for server procedures invoked using the
Database Application Remote Interface (DARI) API.

Related reference:

v “SQLCA” in the Administrative API Reference

v “SQLCHAR” in the Administrative API Reference

v “SQLDA” in the Administrative API Reference

LOB Host Variables in REXX

When you fetch a LOB column into a REXX host variable, it will be stored as
a simple (that is, uncounted) string. This is handled in the same manner as all

Chapter 13. Programming in REXX 341

character-based SQL types (such as CHAR, VARCHAR, GRAPHIC, LONG,
and so on). On input, if the size of the contents of your host variable is larger
than 32K, or if it meets other criteria set out below, it will be assigned the
appropriate LOB type.

In REXX SQL, LOB types are determined from the string content of your host
variable as follows:

Host variable string content Resulting LOB type

:hv1=’ordinary quoted string longer than 32K ...’ CLOB

:hv2=″’string with embedded delimiting quotation marks ″,
″longer than 32K...’″

CLOB

:hv3=″G’DBCS string with embedded delimiting single ″,
″quotation marks, beginning with G, longer than 32K...’″

DBCLOB

:hv4=″BIN’string with embedded delimiting single ″,
″quotation marks, beginning with BIN, any length...’″

BLOB

Syntax for LOB Locator Declarations in REXX

The following shows the syntax for declaring LOB locator host variables in
REXX:

Syntax for LOB Locator Host Variables in REXX

^^ _

,

DECLARE : variable-name LANGUAGE TYPE BLOB LOCATOR
CLOB
DBCLOB

^`

You must declare LOB locator host variables in your application. When
REXX/SQL encounters these declarations, it treats the declared host variables
as locators for the remainder of the program. Locator values are stored in
REXX variables in an internal format.

Example:
CALL SQLEXEC ’DECLARE :hv1, :hv2 LANGUAGE TYPE CLOB LOCATOR’

Data represented by LOB locators returned from the engine can be freed in
REXX/SQL using the FREE LOCATOR statement which has the following
format:

Syntax for FREE LOCATOR Statement

342 Programming Client Applications

^^ _

,

FREE LOCATOR : variable-name ^`

Example:
CALL SQLEXEC ’FREE LOCATOR :hv1, :hv2’

Syntax for LOB File Reference Declarations in REXX

You must declare LOB file reference host variables in your application. When
REXX/SQL encounters these declarations, it treats the declared host variables
as LOB file references for the remainder of the program.

The following shows the syntax for declaring LOB file reference host variables
in REXX:

REXX File Reference Declarations

^^ _

,

DECLARE : variable-name LANGUAGE TYPE BLOB FILE
CLOB
DBCLOB

^`

Example:
CALL SQLEXEC ’DECLARE :hv3, :hv4 LANGUAGE TYPE CLOB FILE’

File reference variables in REXX contain three fields. For the above example
they are:
hv3.FILE_OPTIONS.

Set by the application to indicate how the file will be used.
hv3.DATA_LENGTH.

Set by DB2 to indicate the size of the file.
hv3.NAME.

Set by the application to the name of the LOB file.

For FILE_OPTIONS, the application sets the following keywords:

Keyword (Integer Value)
Meaning

READ (2) File is to be used for input. This is a regular file that can be
opened, read and closed. The length of the data in the file (in
bytes) is computed (by the application requestor code) upon
opening the file.

Chapter 13. Programming in REXX 343

CREATE (8) On output, create a new file. If the file already exists, it is an
error. The length (in bytes) of the file is returned in the
DATA_LENGTH field of the file reference variable structure.

OVERWRITE (16)
On output, the existing file is overwritten if it exists,
otherwise a new file is created. The length (in bytes) of the file
is returned in the DATA_LENGTH field of the file reference
variable structure.

APPEND (32) The output is appended to the file if it exists, otherwise a new
file is created. The length (in bytes) of the data that was
added to the file (not the total file length) is returned in the
DATA_LENGTH field of the file reference variable structure.

Note: A file reference host variable is a compound variable in REXX, thus you
must set values for the NAME, NAME_LENGTH and FILE_OPTIONS fields in
addition to declaring them.

LOB Host Variable Clearing in REXX

On Windows-based platforms it may be necessary to explicitly clear REXX
SQL LOB locator and file reference host variable declarations as they remain
in effect after your application program ends. This occurs because the
application process does not exit until the session in which it is run is closed.
If REXX SQL LOB declarations are not cleared, they may interfere with other
applications that are running in the same session after a LOB application has
been executed.

The syntax to clear the declaration is:
CALL SQLEXEC "CLEAR SQL VARIABLE DECLARATIONS"

You should code this statement at the end of LOB applications. Note that you
can code it anywhere as a precautionary measure to clear declarations which
might have been left by previous applications (for example, at the beginning
of a REXX SQL application).

Cursors in REXX

When a cursor is declared in REXX, the cursor is associated with a query. The
query is associated with a statement name assigned in the PREPARE
statement. Any referenced host variables are represented by parameter
markers. The following example shows a DECLARE statement associated with
a dynamic SELECT statement:

prep_string = "SELECT TABNAME FROM SYSCAT.TABLES WHERE TABSCHEMA = ?"
CALL SQLEXEC ’PREPARE S1 FROM :prep_string’;
CALL SQLEXEC ’DECLARE C1 CURSOR FOR S1’;
CALL SQLEXEC ’OPEN C1 USING :schema_name’;

344 Programming Client Applications

Related reference:

v “Supported SQL Data Types in REXX” on page 345

Supported SQL Data Types in REXX

Certain predefined REXX data types correspond to DB2 column types. The
following table shows how SQLEXEC and SQLDBS interpret REXX variables
in order to convert their contents to DB2 data types.

Note: There is no host variable support for the DATALINK data type in any
of the DB2 host languages.

Table 18. SQL Column Types Mapped to REXX Declarations

SQL Column Type1 REXX Data Type SQL Column Type Description

SMALLINT
(500 or 501)

A number without a decimal point
ranging from -32 768 to 32 767

16-bit signed integer

INTEGER
(496 or 497)

A number without a decimal point
ranging from -2 147 483 648 to
2 147 483 647

32-bit signed integer

REAL2

(480 or 481)
A number in scientific notation
ranging from -3.40282346 x 1038 to
3.40282346 x 1038

Single-precision floating point

DOUBLE3

(480 or 481)
A number in scientific notation
ranging from -1.79769313 x 10308 to
1.79769313 x 10308

Double-precision floating point

DECIMAL(p,s)
(484 or 485)

A number with a decimal point Packed decimal

CHAR(n)
(452 or 453)

A string with a leading and trailing
quotation mark (’), which has length
n after removing the two quotation
marks

A string of length n with any
non-numeric characters, other than
leading and trailing blanks or the E in
scientific notation

Fixed-length character string of length
n where n is from 1 to 254

VARCHAR(n)
(448 or 449)

Equivalent to CHAR(n) Variable-length character string of
length n, where n ranges from 1 to
4000

LONG VARCHAR
(456 or 457)

Equivalent to CHAR(n) Variable-length character string of
length n, where n ranges from 1 to
32 700

CLOB(n)
(408 or 409)

Equivalent to CHAR(n) Large object variable-length character
string of length n, where n ranges
from 1 to 2 147 483 647

CLOB locator variable4

(964 or 965)
DECLARE :var_name LANGUAGE
TYPE CLOB LOCATOR

Identifies CLOB entities residing on
the server

Chapter 13. Programming in REXX 345

Table 18. SQL Column Types Mapped to REXX Declarations (continued)

SQL Column Type1 REXX Data Type SQL Column Type Description

CLOB file reference variable4

(920 or 921)
DECLARE :var_name LANGUAGE
TYPE CLOB FILE

Descriptor for file containing CLOB
data

BLOB(n)
(404 or 405)

A string with a leading and trailing
apostrophe, preceded by BIN,
containing n characters after
removing the preceding BIN and the
two apostrophes.

Large object variable-length binary
string of length n, where n ranges
from 1 to 2 147 483 647

BLOB locator variable4

(960 or 961)
DECLARE :var_name LANGUAGE
TYPE BLOB LOCATOR

Identifies BLOB entities on the server

BLOB file reference variable4

(916 or 917)
DECLARE :var_name LANGUAGE
TYPE BLOB FILE

Descriptor for the file containing
BLOB data

DATE
(384 or 385)

Equivalent to CHAR(10) 10-byte character string

TIME
(388 or 389)

Equivalent to CHAR(8) 8-byte character string

TIMESTAMP
(392 or 393)

Equivalent to CHAR(26) 26-byte character string

Note: The following data types are only available in the DBCS environment.

GRAPHIC(n)
(468 or 469)

A string with a leading and trailing
apostrophe preceded by a G or N,
containing n DBCS characters after
removing the preceding character and
the two apostrophes

Fixed-length graphic string of length
n, where n is from 1 to 127

VARGRAPHIC(n)
(464 or 465)

Equivalent to GRAPHIC(n) Variable-length graphic string of
length n, where n ranges from 1 to
2 000

LONG VARGRAPHIC
(472 or 473)

Equivalent to GRAPHIC(n) Long variable-length graphic string of
length n, where n ranges from 1 to
16 350

DBCLOB(n)
(412 or 413)

Equivalent to GRAPHIC(n) Large object variable-length graphic
string of length n, where n ranges
from 1 to 1 073 741 823

DBCLOB locator variable4

(968 or 969)
DECLARE :var_name LANGUAGE
TYPE DBCLOB LOCATOR

Identifies DBCLOB entities residing
on the server

DBCLOB file reference variable4

(924 or 925)
DECLARE :var_name LANGUAGE
TYPE DBCLOB FILE

Descriptor for file containing
DBCLOB data

346 Programming Client Applications

Table 18. SQL Column Types Mapped to REXX Declarations (continued)

SQL Column Type1 REXX Data Type SQL Column Type Description

Notes:

1. The first number under Column Type indicates that an indicator variable is not provided, and the second number
indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values, or to
hold the length of a truncated string.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is
the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:
v FLOAT
v FLOAT(n) where 24 < n < 54 is
v DOUBLE PRECISION

4. This is not a column type but a host variable type.

Related concepts:

v “Cursors in REXX” on page 344

Execution Requirements for REXX

The sections that follow describe the execution requirements for REXX
applications.

Building and Running REXX Applications

REXX applications are not precompiled, compiled, or linked. The instructions
below describe how to build and run REXX applications on Windows
operating systems, and on the AIX operating system.

Restrictions:

On Windows-based platforms, your application file must have a .CMD
extension. After creation, you can run your application directly from the
operating system command prompt. On AIX, your application file can have
any extension.

Procedure:

Build and run your REXX applications as follows:
v On Windows operating systems, your application file can have any name.

After creation, you can run your application from the operating system
command prompt by invoking the REXX interpreter as follows:

REXX file_name

v On AIX, you can run your application using either of the following two
methods:

Chapter 13. Programming in REXX 347

– At the shell command prompt, type rexx name where name is the name of
your REXX program.

– If the first line of your REXX program contains a ″magic number″ (#!)
and identifies the directory where the REXX/6000 interpreter resides,
you can run your REXX program by typing its name at the shell
command prompt. For example, if the REXX/6000 interpreter file is in
the /usr/bin directory, include the following as the very first line of your
REXX program:

#! /usr/bin/rexx

Then, make the program executable by typing the following command at
the shell command prompt:

chmod +x name

Run your REXX program by typing its file name at the shell command
prompt.

Note: On AIX, you should set the LIBPATH environment variable to
include the directory where the REXX SQL library, db2rexx is located.
For example:

export LIBPATH=/lib:/usr/lib:/usr/lpp/db2_08_01/lib

Bind Files for REXX

Five bind files are provided to support REXX applications. The names of these
files are included in the DB2UBIND.LST file. Each bind file was precompiled
using a different isolation level; therefore, there are five different packages
stored in the database.

The five bind files are:
DB2ARXCS.BND

Supports the cursor stability isolation level.
DB2ARXRR.BND

Supports the repeatable read isolation leve.l
DB2ARXUR.BND

Supports the uncommitted read isolation level.
DB2ARXRS.BND

Supports the read stability isolation level.
DB2ARXNC.BND

Supports the no commit isolation level. This isolation level is used
when working with some host, AS/400, or iSeries database servers.
On other databases, it behaves like the uncommitted read isolation
level.

Note: In some cases, it may be necessary to explicitly bind these files to the
database.

348 Programming Client Applications

When you use the SQLEXEC routine, the package created with cursor stability
is used as a default. If you require one of the other isolation levels, you can
change isolation levels with the SQLDBS CHANGE SQL ISOLATION LEVEL
API, before connecting to the database. This will cause subsequent calls to the
SQLEXEC routine to be associated with the specified isolation level.

Windows-based REXX applications cannot assume that the default isolation
level is in effect unless they know that no other REXX programs in the session
have changed the setting. Before connecting to a database, a REXX application
should explicitly set the isolation level.

API Syntax for REXX

Use the SQLDBS routine to call DB2 APIs with the following syntax:
CALL SQLDBS ’command string’

If a DB2® API you want to use cannot be called using the SQLDBS routine,
you may still call the API by calling the DB2 command line processor (CLP)
from within the REXX application. However, because the DB2 CLP directs
output either to the standard output device or to a specified file, your REXX
application cannot directly access the output from the called DB2 API, nor can
it easily make a determination as to whether the called API is successful or
not. The SQLDB2 API provides an interface to the DB2 CLP that provides
direct feedback to your REXX application on the success or failure of each
called API by setting the compound REXX variable, SQLCA, after each call.

You can use the SQLDB2 routine to call DB2 APIs using the following syntax:
CALL SQLDB2 ’command string’

where ’command string’ is a string that can be processed by the
command-line processor (CLP).

Calling a DB2 API using SQLDB2 is equivalent to calling the CLP directly,
except for the following:
v The call to the CLP executable is replaced by the call to SQLDB2 (all other

CLP options and parameters are specified the same way).
v The REXX compound variable SQLCA is set after calling the SQLDB2 but is

not set after calling the CLP executable.
v The default display output of the CLP is set to off when you call SQLDB2,

whereas the display is set to on output when you call the CLP executable.
Note that you can turn the display output of the CLP to on by passing the
+o or the −o− option to the SQLDB2.

Chapter 13. Programming in REXX 349

Because the only REXX variable that is set after you call SQLDB2 is the
SQLCA, you only use this routine to call DB2 APIs that do not return any
data other than the SQLCA and that are not currently implemented through
the SQLDBS interface. Thus, only the following DB2 APIs are supported by
SQLDB2:
v Activate Database
v Add Node
v Bind for DB2 Version 1(1) (2)

v Bind for DB2 Version 2 or 5(1)

v Create Database at Node
v Drop Database at Node
v Drop Node Verify
v Deactivate Database
v Deregister
v Load(3)

v Load Query
v Precompile Program(1)

v Rebind Package(1)

v Redistribute Database Partition Group
v Register
v Start Database Manager
v Stop Database Manager

Notes on DB2 APIs Supported by SQLDB2:

1. These commands require a CONNECT statement through the SQLDB2
interface. Connections using the SQLDB2 interface are not accessible to the
SQLEXEC interface and connections using the SQLEXEC interface are not
accessible to the SQLDB2 interface.

2. Is supported on Windows-based platforms through the SQLDB2 interface.
3. The optional output parameter, pLoadInfoOut for the Load API is not

returned to the application in REXX.

Note: Although the SQLDB2 routine is intended to be used only for the DB2
APIs listed above, it can also be used for other DB2 APIs that are not
supported through the SQLDBS routine. Alternatively, the DB2 APIs
can be accessed through the CLP from within the REXX application.

Calling Stored Procedures from REXX

The sections that follow describe how to call stored procedures from REXX
applications.

Stored Procedures in REXX

REXX SQL applications can call stored procedures at the database server by
using the SQL CALL statement. The stored procedure can be written in any

350 Programming Client Applications

language supported on that server, except for REXX on AIX® systems. (Client
applications may be written in REXX on AIX systems, but, as with other
languages, they cannot call a stored procedure written in REXX on AIX.)

Related concepts:

v “Stored Procedure Calls in REXX” on page 351

Stored Procedure Calls in REXX

The CALL statement allows a client application to pass data to, and receive
data from, a server stored procedure. The interface for both input and output
data is a list of host variables. Because REXX generally determines the type
and size of host variables based on their content, any output-only variables
passed to CALL should be initialized with dummy data similar in type and
size to the expected output.

Data can also be passed to stored procedures through SQLDA REXX variables,
using the USING DESCRIPTOR syntax of the CALL statement. The following
table shows how the SQLDA is set up. In the table, ':value' is the stem of a
REXX host variable that contains the values needed for the application. For
the DESCRIPTOR, 'n' is a numeric value indicating a specific sqlvar element of
the SQLDA. The numbers on the right refer to the notes following the table.

Table 19. Client-side REXX SQLDA for Stored Procedures using the CALL Statement

USING DESCRIPTOR :value.SQLD 1

:value.n.SQLTYPE 1

:value.n.SQLLEN 1

:value.n.SQLDATA 1 2

:value.n.SQLDIND 1 2

Notes:

1. Before invoking the stored procedure, the client application must initialize
the REXX variable with appropriate data.
When the SQL CALL statement is executed, the database manager
allocates storage and retrieves the value of the REXX variable from the
REXX variable pool. For an SQLDA used in a CALL statement, the
database manager allocates storage for the SQLDATA and SQLIND fields
based on the SQLTYPE and SQLLEN values.
In the case of a REXX stored procedure (that is, the procedure being called
is itself written in Windows-based REXX), the data passed by the client
from either type of CALL statement or the DARI API is placed in the
REXX variable pool at the database server using the following predefined
names:

Chapter 13. Programming in REXX 351

SQLRIDA
Predefined name for the REXX input SQLDA variable

SQLRODA
Predefined name for the REXX output SQLDA variable

2. When the stored procedure terminates, the database manager also retrieves
the value of the variables from the stored procedure. The values are
returned to the client application and placed in the client’s REXX variable
pool.

Related concepts:

v “Client Considerations for Calling Stored Procedures in REXX” on page 352
v “Server Considerations for Calling Stored Procedures in REXX” on page 352
v “Retrieval of Precision and SCALE Values from SQLDA Decimal Fields” on

page 353

Related reference:

v “CALL statement” in the SQL Reference, Volume 2

Client Considerations for Calling Stored Procedures in REXX

When using host variables in the CALL statement, initialize each host variable
to a value that is type compatible with any data that is returned to the host
variable from the server procedure. You should perform this initialization
even if the corresponding indicator is negative.

When using descriptors, SQLDATA must be initialized and contain data that
is type compatible with any data that is returned from the server procedure.
You should perform this initialization even if the SQLIND field contains a
negative value.

Related reference:

v “Supported SQL Data Types in REXX” on page 345

Server Considerations for Calling Stored Procedures in REXX

Ensure that all the SQLDATA fields and SQLIND (if it is a nullable type) of
the predefined output sqlda SQLRODA are initialized. For example, if
SQLRODA.SQLD is 2, the following fields must contain some data (even if
the corresponding indicators are negative and the data is not passed back to
the client):
v SQLRODA.1.SQLDATA
v SQLRODA.2.SQLDATA

352 Programming Client Applications

Retrieval of Precision and SCALE Values from SQLDA Decimal Fields

To retrieve the precision and scale values for decimal fields from the SQLDA
structure returned by the database manager, use the sqllen.scale and
sqllen.precision values when you initialize the SQLDA output in your
REXX program. For example:

.

.

.
/* INITIALIZE ONE ELEMENT OF OUTPUT SQLDA */
io_sqlda.sqld = 1
io_sqlda.1.sqltype = 485 /* DECIMAL DATA TYPE */
io_sqlda.1.sqllen.scale = 2 /* DIGITS RIGHT OF DECIMAL POINT */
io_sqlda.1.sqllen.precision = 7 /* WIDTH OF DECIMAL */
io_sqlda.1.sqldata = 00000.00 /* HELPS DEFINE DATA FORMAT */
io_sqlda.1.sqlind = -1 /* NO INPUT DATA */
.
.
.

Chapter 13. Programming in REXX 353

354 Programming Client Applications

Chapter 14. Writing Applications Using the IBM OLE DB
Provider for DB2 Servers

Purpose of the IBM OLE DB Provider for
DB2 355
Application Types Supported by the IBM
OLE DB Provider for DB2 357
OLE DB Services 357

Thread Model Supported by IBM OLE DB
Provider 357
Large Object Manipulation with the IBM
OLE DB Provider 357
Schema Rowsets Supported by the IBM
OLE DB Provider 357
OLE DB Services Automatically Enabled
by IBM OLE DB Provider 359

Data Services 360
Supported Cursor Modes for the IBM
OLE DB Provider 360
Data Type Mappings between DB2 and
OLE DB 360
Data Conversion for Setting Data from
OLE DB Types to DB2 Types 362
Data Conversion for Setting Data from
DB2 Types to OLE DB Types 364

IBM OLE DB Provider Restrictions 366
IBM OLE DB Provider Support for OLE DB
Components and Interfaces 366
IBM OLE DB Provider Support for OLE DB
Properties 369

Connections to Data Sources Using IBM OLE
DB Provider 372
ADO Applications 373

ADO Connection String Keywords . . . 373
Connections to Data Sources with Visual
Basic ADO Applications 373
Updatable Scrollable Cursors in ADO
Applications 374
Limitations for ADO Applications . . . 374
IBM OLE DB Provider Support for ADO
Methods and Properties. 374

C and C++ Applications 378
Compilation and Linking of C/C++
Applications and the IBM OLE DB
Provider 378
Connections to Data Sources in C/C++
Applications using the IBM OLE DB
Provider 379
Updatable Scrollable Cursors in ATL
Applications and the IBM OLE DB
Provider 379

MTS and COM+ Distributed Transactions 379
MTS and COM+ Distributed Transaction
Support and the IBM OLE DB Provider . 380
Enablement of MTS Support in DB2
Universal Database for C/C++
Applications 380

Purpose of the IBM OLE DB Provider for DB2

Microsoft OLE DB is a set of OLE/COM interfaces that provides applications
with uniform access to data stored in diverse information sources. The OLE
DB architecture defines OLE DB consumers and OLE DB providers. An OLE
DB consumer is any system or application that uses OLE DB interfaces; an
OLE DB provider is a component that exposes OLE DB interfaces.

The IBM® OLE DB Provider for DB2® allows DB2 to act as a resource
manager for the OLE DB provider. This support gives OLE DB-based
applications the ability to extract or query DB2 data using the OLE interface.
The IBM OLE DB Provider for DB2, whose provider name is IBMDADB2,
enables OLE DB consumers to access data on a DB2 Universal Database™

© Copyright IBM Corp. 1993-2002 355

server. If DB2 Connect™ is installed, these OLE DB consumers can also access
data on a host DBMS such as DB2 for MVS, DB2 for VM/VSE, or SQL/400.

The IBM OLE DB Provider for DB2 offers the following features:
v Support level 0 of the OLE DB provider specification, including some

additional level 1 interfaces.
v A free threaded provider implementation, which enables the application to

create components in one thread and use those components in any other
thread.

v An Error Lookup Service that returns DB2 error messages.

Note that the IBM OLE DB Provider resides on the client and is different from
the OLE DB table functions, which are also supported by DB2 UDB.

Subsequent sections of this document describe the specific implementation of
the IBM OLE DB Provider for DB2. For more information on the Microsoft®

OLE DB 2.0 specification, refer to the Microsoft OLE DB 2.0 Programmer’s
Reference and Data Access SDK, available from Microsoft Press.

Version Compliance:

The IBM OLE DB Provider for DB2 complies with Version 2.5 of the Microsoft
OLE DB specification.

System Requirements:

Refer to the announcement letter for the IBM OLE DB Provider for DB2
Servers to see the supported Windows® operating systems.

To install the IBM OLE DB Provider for DB2, you must first be running on
one of the supported operating systems listed above. You also need to install
the DB2 Application Development Client, as well as the Microsoft Data Access
Components (MDAC) Version 2.7 or higher, which was available at the time
of writing from the following site: http://www.microsoft.com/data.

Related reference:

v “IBM OLE DB Provider Support for OLE DB Components and Interfaces”
on page 366

356 Programming Client Applications

Application Types Supported by the IBM OLE DB Provider for DB2

With the IBM® OLE DB Provider for DB2, you can create the following types
of applications:
v ADO applications, including:

– Microsoft® Visual Studio C++ applications
– Microsoft Visual Basic applications

v C/C++ applications which access IBMDADB2 directly using the OLE DB
interfaces, including ATL applications whose Data Access Consumer Objects
were generated by the ATL COM AppWizard.

OLE DB Services

The sections that follow describe OLE DB services.

Thread Model Supported by IBM OLE DB Provider

The IBM® OLE DB Provider for DB2® supports the Free Threaded model,
which allows applications to create components in one thread and use those
components in any other thread.

Large Object Manipulation with the IBM OLE DB Provider

To get and set data as storage objects (DBTYPE_IUNKNOWN) with
IBMDADB2, use the ISequentialStream interface as follows:
v To bind a storage object to a parameter, the DBOBJECT in the DBBINDING

structure can only contain the value STGM_READ for the dwFlag field.
IBMDADB2 will execute the Read method of the ISequentialStream
interface of the bound object.

v To get data from a storage object, your application must perform a Read
method on the ISequentialStream interface of the storage object.

v When getting data, the value of the length part is the length of the real
data, not the length of the IUnknown pointer.

Schema Rowsets Supported by the IBM OLE DB Provider

The following table shows the schema rowsets that are supported by
IDBSchemaRowset. Note that unsupported columns will be set to null in the
rowsets.

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 357

Table 20. Schema Rowsets Supported by the IBM OLE DB Provider for DB2
Supported GUIDs Supported Restrictions Supported Columns Notes

DBSCHEMA
_COLUMN_PRIVILEGES

COLUMN_NAME
TABLE_NAME
TABLE_SCHEMA

COLUMN_NAME
GRANTEE
GRANTOR
IS_GRANTABLE
PRIVILEGE_TYPE
TABLE_NAME
TABLE_SCHEMA

DB_SCHEMA_COLUMNS COLUMN_NAME
TABLE_NAME
TABLE_SCHEMA

CHARACTER_MAXIMUM_LENGTH
CHARACTER_OCTET_LENGTH
COLUMN_DEFAULT
COLUMN_FLAGS
COLUMN_HASDEFAULT
COLUMN_NAME
DATA_TYPE
DESCRIPTION
IS_NULLABLE
NUMERIC_PRECISION
NUMERIC_SCALE
ORDINAL_POSITION
TABLE_NAME
TABLE_SCHEMA

DBSCHEMA_FOREIGN_KEYS FK_TABLE_NAME
FK_TABLE_SCHEMA
PK_TABLE_NAME
PK_TABLE_SCHEMA

DEFERRABILITY
DELETE_RULE
FK_COLUMN_NAME
FK_NAME
FK_TABLE_NAME
FK_TABLE_SCHEMA
ORDINAL
PK_COLUMN_NAME
PK_NAME
PK_TABLE_NAME
PK_TABLE_SCHEMA
UPDATE_RULE

Must specify at least one
of the following
restrictions:
PK_TABLE_NAME or
FK_TABLE_NAME

No “%” wildcard
allowed.

DBSCHEMA_INDEXES TABLE_NAME
TABLE_SCHEMA

CARDINALITY
CLUSTERED
COLLATION
COLUMN_NAME
INDEX_NAME
INDEX_SCHEMA
ORDINAL_POSITION
PAGES
TABLE_NAME
TABLE_SCHEMA
TYPE
UNIQUE

No sort order supported.
Sort order, if specified,
will be ignored.

DBSCHEMA_PRIMARY_KEYS TABLE_NAME
TABLE_SCHEMA

COLUMN_NAME
ORDINAL
PK_NAME
TABLE_NAME
TABLE_SCHEMA

Must specify at least the
following restrictions:
TABLE_NAME

No “%” wildcard
allowed.

358 Programming Client Applications

Table 20. Schema Rowsets Supported by the IBM OLE DB Provider for DB2 (continued)
Supported GUIDs Supported Restrictions Supported Columns Notes

DBSCHEMA
_PROCEDURE_PARAMETERS

PARAMETER_NAME
PROCEDURE_NAME
PROCEDURE_SCHEMA

CHARACTER_MAXIMUM_LENGTH
CHARACTER_OCTET_LENGTH
DATA_TYPE
DESCRIPTION
IS_NULLABLE
NUMERIC_PRECISION
NUMERIC_SCALE
ORDINAL_POSITION
PARAMETER_DEFAULT
PARAMETER_HASDEFAULT
PARAMETER_NAME
PARAMETER_TYPE
PROCEDURE_NAME
PROCEDURE_SCHEMA
TYPE_NAME

DBSCHEMA_PROCEDURES PROCEDURE_NAME
PROCEDURE_SCHEMA

DESCRIPTION
PROCEDURE_NAME
PROCEDURE_SCHEMA
PROCEDURE_TYPE

DBSCHEMA_PROVIDER_TYPES (NONE) AUTO_UNIQUE_VALUE
BEST_MATCH
CASE_SENSITIVE
CREATE_PARAMS
COLUMN_SIZE
DATA_TYPE
FIXED_PREC_SCALE
IS_FIXEDLENGTH
IS_LONG
IS_NULLABLE
LITERAL_PREFIX
LITERAL_SUFFIX
LOCAL_TYPE_NAME
MINIMUM_SCALE
MAXIMUM_SCALE
SEARCHABLE
TYPE_NAME
UNSIGNED_ATTRIBUTE

DBSCHEMA_STATISTICS TABLE_NAME
TABLE_SCHEMA

CARDINALITY
TABLE_NAME
TABLE_SCHEMA

No sort order supported.
Sort order, if specified,
will be ignored.

DBSCHEMA
_TABLE_PRIVILEGES

TABLE_NAME
TABLE_SCHEMA

GRANTEE
GRANTOR
IS_GRANTABLE
PRIVILEGE_TYPE
TABLE_NAME
TABLE_SCHEMA

DBSCHEMA_TABLES TABLE_NAME
TABLE_SCHEMA
TABLE_TYPE

DESCRIPTION
TABLE_NAME
TABLE_SCHEMA
TABLE_TYPE

OLE DB Services Automatically Enabled by IBM OLE DB Provider

By default, the IBM® OLE DB Provider for DB2® automatically enables all the
OLE DB services by adding a registry entry OLEDB_SERVICES under the
class ID (CLSID) of the provider with the DWORD value of 0xFFFFFFFF. The

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 359

meaning of this value is as follows:

Table 21. OLE DB Services

Enabled Services DWORD Value

All services (default) 0xFFFFFFFF

All except pooling and AutoEnlistment 0xFFFFFFFE

All except client cursor 0xFFFFFFFB

All except pooling, enlistment and cursor 0xFFFFFFF0

No services 0x000000000

Data Services

The sections that follow describe data services considerations.

Supported Cursor Modes for the IBM OLE DB Provider

The IBM® OLE DB Provider for DB2® natively supports read-only and
forward-only cursors, called Server Cursors. For updatable scrollable cursors,
your application should use the OLE DB Cursor Service Component known as
the Client Cursor. OLE DB native applications will have updatable and
scrollable cursors available when the IDataInitialize or IDBPromptInitialize
OLE DB core interface is used to connect to the database. This is because
these interfaces automatically activate the OLE DB Cursor Service Component.

Data Type Mappings between DB2 and OLE DB

The IBM OLE DB Provider supports data type mappings between DB2 data
types and OLE DB data types. The following table provides a complete list of
supported mappings and available names for indicating the data types of
columns and parameters.

Table 22. Data Type Mappings between DB2 Data Types and OLE DB Data Types

DB2 Data
Types

OLE DB Data Types Indicators OLE DB Standard Type Names DB2 Specific Names

SMALLINT DBTYPE_I2 “DBTYPE_I2” “SMALLINT”

INTEGER DBTYPE_I4 “DBTYPE_I4” “INTEGER” or “INT”

BIGINT DBTYPE_I8 “DBTYPE_I8” “BIGINT”

REAL DBTYPE_R4 “DBTYPE_R4” “REAL”

FLOAT DBTYPE_R8 “DBTYPE_R8” “FLOAT”

DOUBLE DBTYPE_R8 “DBTYPE_R8″ “DOUBLE” or
“DOUBLE
PRECISION”

DECIMAL DBTYPE_NUMERIC “DBTYPE_NUMERIC” “DEC” or
“DECIMAL”

360 Programming Client Applications

Table 22. Data Type Mappings between DB2 Data Types and OLE DB Data Types (continued)

DB2 Data
Types

OLE DB Data Types Indicators OLE DB Standard Type Names DB2 Specific Names

NUMERIC DBTYPE_NUMERIC “DBTYPE_NUMERIC” “NUM” or
“NUMERIC”

DATE DBTYPE_DBDATE “DBTYPE_DBDATE” “DATE”

TIME DBTYPE_DBTIME “DBTYPE_DBTIME” “TIME”

TIMESTAMP DBTYPE_DBTIMESTAMP “DBTYPE_DBTIMESTAMP” “TIMESTAMP”

CHAR DBTYPE_STR “DBTYPE_CHAR” “CHAR” or
“CHARACTER”

VARCHAR DBTYPE_STR “DBTYPE_VARCHAR” “VARCHAR”

LONG
VARCHAR

DBTYPE_STR “DBTYPE_LONGVARCHAR” “LONG VARCHAR”

CLOB DBTYPE_STR
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“DBTYPE_CHAR”
“DBTYPE_VARCHAR”
“DBTYPE_LONGVARCHAR”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“CLOB”

GRAPHIC DBTYPE_WSTR “DBTYPE_WCHAR” “GRAPHIC”

VARGRAPHIC DBTYPE_WSTR “DBTYPE_WVARCHAR” “VARGRAPHIC”

LONG
VARGRAPHIC

DBTYPE_WSTR “DBTYPE_WLONGVARCHAR” “LONG
VARGRAPHIC”

DBCLOB DBTYPE_WSTR
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“DBTYPE_WCHAR”
“DBTYPE_WVARCHAR”
“DBTYPE_WLONGVARCHAR”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“DBCLOB”

CHAR(n) FOR
BIT DATA

DBTYPE_BYTES “DBTYPE_BINARY”

VARCHAR(n)
FOR BIT
DATA

DBTYPE_BYTES “DBTYPE_VARBINARY”

LONG
VARCHAR
FOR BIT
DATA

DBTYPE_BYTES “DBTYPE_LONGVARBINARY”

BLOB DBTYPE_BYTES
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“DBTYPE_BINARY”
“DBTYPE_VARBINARY”
“DBTYPE_LONGVARBINARY”
and DBCOLUMNFLAGS_ISLONG
or DBPARAMFLAGS_ISLONG

“BLOB”

DATA LINK DBTYPE_STR “DBTYPE_CHAR” “DATA LINK”

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 361

Data Conversion for Setting Data from OLE DB Types to DB2 Types

The IBM OLE DB Provider supports data conversions for setting data from
OLE DB types to DB2 types. Note that truncation of the data may occur in
some cases, depending on the types and the value of the data.

Table 23. Data Conversions from OLE DB Types to DB2 Types

OLE DB Type Indicator

DB2 Data Types

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I

M
A
L

N
U
M
E
R
I
C

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

For Bit
Data

B
L
O
B

D
A
T
A

L
I
N
K

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

DBTYPE_EMPTY

DBTYPE_NULL

DBTYPE_RESERVED

DBTYPE_I1 X X X X X X X X

DBTYPE_I2 X X X X X X X X

DBTYPE_I4 X X X X X X X X

DBTYPE_I8 X X X X X X X X

DBTYPE_UI1 X X X X X X X X

DBTYPE_UI2 X X X X X X X X

DBTYPE_UI4 X X X X X X X X

DBTYPE_UI8 X X X X X X X X

DBTYPE_R4 X X X X X X X X

DBTYPE_R8 X X X X X X X X

DBTYPE_CY

DBTYPE_DECIMAL X X X X X X X X

DBTYPE_NUMERIC X X X X X X X X

DBTYPE_DATE

DBTYPE_BOOL X X X X X X X X

DBTYPE_BYTES X X X X X X X X X

DBTYPE_BSTR
– to be determined

362 Programming Client Applications

Table 23. Data Conversions from OLE DB Types to DB2 Types (continued)

OLE DB Type Indicator

DB2 Data Types

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I

M
A
L

N
U
M
E
R
I
C

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

For Bit
Data

B
L
O
B

D
A
T
A

L
I
N
K

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

DBTYPE_STR X X X X X X X X X X X X X X X X X X X

DBTYPE_WSTR X X X

DBTYPE_VARIANT
– to be determined

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN X X X X X X X X X X X

DBTYPE_GUID

DBTYPE_ERROR

DBTYPE_BYREF

DBTYPE_ARRAY

DBTYPE_VECTOR

DBTYPE_UDT

DBTYPE_DBDATE X X X X

DBTYPE_DBTIME X X X X

DBTYPE_DBTIMESTAMP X X X X X

DBTYPE_FILETIME

DBTYPE_PROP_VARIANT

DBTYPE_HCHAPTER

DBTYPE_VARNUMERIC

Related reference:

v “Data Conversion for Setting Data from DB2 Types to OLE DB Types” on
page 364

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 363

Data Conversion for Setting Data from DB2 Types to OLE DB Types

For getting data, the IBM OLE DB Provider allows data conversions from DB2
types to OLE DB types. Note that truncation of the data may occur in some
cases, depending on the types and the value of the data.

Table 24. Data Conversions from DB2 Types to OLE DB Types

OLE DB Type Indicator

DB2 Data Types

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I

M
A
L

N
U
M
E
R
I
C

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

For Bit
Data

B
L
O
B

D
A
T
A

L
I
N
K

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

DBTYPE_EMPTY

DBTYPE_NULL

DBTYPE_RESERVED

DBTYPE_I1 X X X X X X X X X X X X X X X

DBTYPE_I2 X X X X X X X X X X X X X X X

DBTYPE_I4 X X X X X X X X X X X X X X X

DBTYPE_I8 X X X X X X X X X X X X X X X X

DBTYPE_UI1 X X X X X X X X X X X X X X X

DBTYPE_UI2 X X X X X X X X X X X X X X X

DBTYPE_UI4 X X X X X X X X X X X X X X X

DBTYPE_UI8 X X X X X X X X X X X X X X X X

DBTYPE_R4 X X X X X X X X X X X X X X X

DBTYPE_R8 X X X X X X X X X X X X X X X

DBTYPE_CY X X X X X X X X X X X X X X X

DBTYPE_DECIMAL X X X X X X X X X X X X X X X

DBTYPE_NUMERIC X X X X X X X X X X X X X X X

DBTYPE_DATE X X X X X X X X X X X X X X

DBTYPE_BOOL X X X X X X X X X X X X X X X

DBTYPE_BYTES X X X X X X X X X X X X X X X X X X

DBTYPE_BSTR X X X X X X X X X X X X X X X X X X X

DBTYPE_STR X X X X X X X X X X X X X X X X X X X

364 Programming Client Applications

Table 24. Data Conversions from DB2 Types to OLE DB Types (continued)

OLE DB Type Indicator

DB2 Data Types

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

F
L
O
A
T

D
O
U
B
L
E

D
E
C
I

M
A
L

N
U
M
E
R
I
C

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

L
O
N
G

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

For Bit
Data

B
L
O
B

D
A
T
A

L
I
N
K

C
H
A
R

V
A
R
C
H
A
R

L
O
N
G

V
A
R
C
H
A
R

DBTYPE_WSTR X X X X X X X X X X X X X X X X X X X

DBTYPE_VARIANT X X X X X X X X X X X X X X X X X X X

DBTYPE_IDISPATCH

DBTYPE_IUNKNOWN X

DBTYPE_GUID X X X X X X X X X X

DBTYPE_ERROR

DBTYPE_BYREF

DBTYPE_ARRAY

DBTYPE_VECTOR

DBTYPE_UDT

DBTYPE_DBDATE X X X X X X X X X X X X X

DBTYPE_DBTIME X X X X X X X X X X

DBTYPE_DBTIMESTAMP X X X X X X X X X X X X X

DBTYPE_FILETIME X X X X X X X X X X X X X X

DBTYPE_PROP_VARIANT X X X X X X X X X X X X X X X

DBTYPE_HCHAPTER

DBTYPE_VARNUMERIC

Note: When the application performs the ISequentialStream::Read to get the data from the storage object, the format
of the data returned depends on the column data type:

v For non character and binary data types, the data of the column is exposed as a sequence of bytes which
represent those values in the operating system.

v For character data type, the data is first converted to DBTYPE_STR.

v For DBCLOB, the data is first converted to DBTYPE_WCHAR.

Related reference:

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 365

v “Data Conversion for Setting Data from OLE DB Types to DB2 Types” on
page 362

IBM OLE DB Provider Restrictions

Following are the restrictions for the IBM® OLE DB Provider:
v IBMDADB2 supports auto commit and user-controlled transaction scope

with the ITransactionLocal interface. Auto commit transaction scope is the
default scope. Nested transactions are not supported.

v ISQLErrorInfo is not supported. The IErrorLookUp, IErrorInfo, and
IErrorRecords interfaces are supported.

v RestartPosition is not supported when the command text contains
parameters.

v IBMDADB2 does not quote table names passed through the DBID
parameters, which are parameters used by the IOpenRowset interface.
Instead, the OLE DB consumer must add quotes to the table names when
quotes are required.

v Only a single set of parameters is supported. Multiple parameter sets are
not yet supported.

v Named parameters are not supported by the IBM OLE DB Provider. When
ICommandWithParameters::MapParameterNames is called,
DB_S_ERRORSOCCURRED is always returned. Parameter names are
ignored in ICommandWithParameters::GetParameterInfo and
ICommandWithParameters::SetParameterInfo, since only ordinals are used.

IBM OLE DB Provider Support for OLE DB Components and Interfaces

The following table lists the OLE DB components and interfaces that are
supported by the IBM OLE DB Provider and the Microsoft OLE DB Provider
for ODBC.

Table 25. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider
for DB2 and the Microsoft OLE DB Provider for ODBC

Interface DB2 ODBC Provider

BLOB

ISequentialStream Yes Yes

Command

IAccessor Yes Yes

ICommand Yes Yes

ICommandPersist No No

366 Programming Client Applications

Table 25. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider
for DB2 and the Microsoft OLE DB Provider for ODBC (continued)

Interface DB2 ODBC Provider

ICommandPrepare Yes Yes

ICommandProperties Yes Yes

ICommandText Yes Yes

ICommandWithParameters Yes Yes

IColumnsInfo Yes Yes

IColumnsRowset No Yes

IConvertType Yes Yes

ISupportErrorInfo Yes Yes

DataSource

IConnectionPoint No Yes

IDBAsynchNotify (consumer) No No

IDBAsynchStatus No No

IDBConnectionPointContainer No Yes

IDBCreateSession Yes Yes

IDBDataSourceAdmin No No

IDBInfo Yes Yes

IDBInitialize Yes Yes

IDBProperties Yes Yes

IPersist Yes No

IPersistFile No Yes

ISupportErrorInfo Yes Yes

Enumerator

IDBInitialize Yes Yes

IDBProperties Yes Yes

IParseDisplayName Yes No

ISourcesRowset Yes Yes

ISupportErrorInfo Yes Yes

Error Lookup Service

IErrorLookUp Yes Yes

Error Object

IErrorInfo Yes No

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 367

Table 25. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider
for DB2 and the Microsoft OLE DB Provider for ODBC (continued)

Interface DB2 ODBC Provider

IErrorRecords Yes No

ISQLErrorInfo (custom) No No

Multiple Results

IMultipleResults Yes Yes

ISupportErrorInfo Yes Yes

RowSet

IAccessor Yes Yes

IColumnsRowset No Yes

IColumnsInfo Yes Yes

IConvertType Yes Yes

IChapteredRowset No No

IConnectionPointContainer No Yes

IDBAsynchStatus No No

IParentRowset No No

IRowset Yes Yes

IRowsetChange Cursor Service Component Yes

IRowsetChapterMember No No

IRowsetFind No No

IRowsetIdentity Yes Yes

IRowsetIndex No No

IRowsetInfo Yes Yes

IRowsetLocate Cursor Service Component Yes

IRowsetNotify (consumer) No No

IRowsetRefresh Cursor Service Component Yes

IRowsetResynch Cursor Service Component Yes

IRowsetScroll Cursor Service Component Yes

IRowsetUpdate Cursor Service Component Yes

IRowsetView No No

ISupportErrorInfo Yes Yes

Session

IAlterIndex No No

368 Programming Client Applications

Table 25. Comparison of OLE DB Components and Interfaces Supported by the IBM OLE DB Provider
for DB2 and the Microsoft OLE DB Provider for ODBC (continued)

Interface DB2 ODBC Provider

IAlterTable No No

IDBCreateCommand Yes Yes

IDBSchemaRowset Yes Yes

IGetDataSource Yes Yes

IIndexDefinition No No

IOpenRowset Yes Yes

ISessionProperties Yes Yes

ISupportErrorInfo Yes Yes

ITableDefinition No No

ITableDefinitionWithConstraints No No

ITransaction Yes Yes

ITransactionJoin Yes Yes

ITransactionLocal Yes Yes

ITransactionObject No No

ITransactionOptions No Yes

View Objects

IViewChapter No No

IViewFilter No No

IViewRowset No No

IViewSort No No

IBM OLE DB Provider Support for OLE DB Properties

The following table shows the OLE DB properties that are supported by the
IBM OLE DB Provider:

Table 26. Properties Supported by the IBM OLE DB Provider for DB2
Property
Group

Property Set Properties Default Value R/W

Data Source DBPROPSET_DATASOURCE DBPROP_MULTIPLECONNECTIONS VARIANT_FALSE R

DBPROP_RESETDATASOURCE DBPROPVAL_RD_RESETALL R

Data Source
Information

DBPROPSET
_DATASOURCEINFO

DBPROP_ACTIVESESSIONS 0 R

DBPROP_ASYNCTXNABORT VARIANT_FALSE R

DBPROP_ASYNCTXNCOMMIT VARIANT_FALSE R

DBPROP_BYREFACCESSORS VARIANT_FALSE R

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 369

Table 26. Properties Supported by the IBM OLE DB Provider for DB2 (continued)
Property
Group

Property Set Properties Default Value R/W

DBPROP_COLUMNDEFINITION DBPROPVAL_CD_NOTNULL R

DBPROP_CONCATNULLBEHAVIOR DBPROPVAL_CB_NULL R

DBPROP_CONNECTIONSTATUS DBPROPVAL_CS_INITIALIZED R

DBPROP_DATASOURCENAME N/A R

DBPROP_DATASOURCEREADONLY VARIANT_FALSE R

DBPROP_DBMSNAME N/A R

DBPROP_DBMSVER N/A R

DBPROP_DSOTHREADMODEL DBPROPVAL_RT_FREETHREAD R

DBPROP_GROUPBY DBPROPVAL_GB_CONTAINS_SELECT R

DBPROP_IDENTIFIERCASE DBPROPVAL_IC_UPPER R

DBPROP_MAXINDEXSIZE 0 R

DBPROP_MAXROWSIZE 0 R

DBPROP_MAXROWSIZEINCLUDESBLOB VARIANT_TRUE R

DBPROP_MAXTABLEINSELECT 0 R

DBPROP_MULTIPLEPARAMSETS VARIANT_FALSE R

DBPROP_MULTIPLERESULTS DBPROPVAL_MR_SUPPORTED R

DBPROP_MULTIPLESTORAGEOBJECTS VARIANT_TRUE R

DBPROP_MULTITABLEUPDATE VARIANT_FALSE R

DBPROP_NULLCOLLATION DBPROPVAL_NC_LOW R

DBPROP_OLEOBJECTS DBPROPVAL_OO_BLOB R

DBPROP_ORDERBYCOLUMNSINSELECT VARIANT_FALSE R

DBPROP
_OUTPUTPARAMETERAVAILABILITY

DBPROPVAL_OA_ATEXECUTE R

DBPROP_PERSISTENTIDTYPE DBPROPVAL_PT_NAME R

DBPROP_PREPAREABORTBEHAVIOR DBPROPVAL_CB_DELETE R

DBPROP_PROCEDURETERM “STORED PROCEDURE” R

DBPROP_PROVIDERFRIENDLYNAME “IBM OLE DB Provider for DB2 Servers” R

DBPROP_PROVIDERNAME “IBMDADB2.DLL” R

DBPROP_PROVIDEROLEDBVER “02.00” R

DBPROP_PROVIDERVER “08.01.0000” R

DBPROP_QUOTEIDENTIFIERCASE DBPROPVAL_IC_SENSITIVE R

DBPROP
_ROWSETCONVERSIONSONCOMMAND

VARIANT_TRUE R

DBPROP_SCHEMATERM “SCHEMA” R

DBPROP_SCHEMAUSAGE DBPROPVAL_SU_DML_STATEMENTS |
DBPROPVAL_SU_TABLE_DEFINITION |
DBPROPVAL_SU_INDEX_DEFINITION |
DBPROPVAL_SU_PRIVILEGE_DEFINITION

R

DBPROP_SQLSUPPORT DBPROPVAL_SQL_ODBC_EXTENDED |
DBPROPVAL_SQL_ESCAPECLAUSES |
DBPROPVAL_SQL_ANSI92_ENTRY

R

DBPROP_SERVERNAME N/A R

DBPROP_STRUCTUREDSTORAGE DBPROPVAL_SS_ISEQUENTIALSTREAM R

DBPROP_SUBQUERIES DBPROPVAL_SQ_CORRELATEDSUBQUERIES |
DBPROPVAL_SQ_COMPARISON |
DBPROPVAL_SQ_EXISTS |
DBPROPVAL_SQ_IN |
DBPROPVAL_SQ_QUANTIFIED |

R

DBPROP_SUPPORTEDTXNDDL DBPROPVAL_TC_ALL R

370 Programming Client Applications

Table 26. Properties Supported by the IBM OLE DB Provider for DB2 (continued)
Property
Group

Property Set Properties Default Value R/W

DBPROP_SUPPORTEDTXNISOLEVELS DBPROPVAL_TI_CURSORSTABILITY |
DBPROPVAL_TI_READCOMMITTED |
DBPROPVAL_TI_READUNCOMMITTED |
DBPROPVAL_TI_SERIALIZABLE |

R

DBPROP_SUPPORTEDTXNISORETAIN DBPROPVAL_TR_COMMIT_DC |
DBPROPVAL_TR_ABORT_NO |

R

DBPROP_TABLETERM “TABLE” R

DBPROP_USERNAME N/A R

Initialization DBPROPSET_DBINIT DBPROP_AUTH_PASSWORD N/A R/W

DBPROP_AUTH_USERID N/A R/W

DBPROP_INIT_DATASOURCE N/A R/W

DBPROP_INIT_HWND N/A R/W

DBPROP_INIT_MODE DB_MODE_READWRITE R/W

DBPROP_INIT_OLEDBSERVICES 0xFFFFFFFF R/W

DBPROP_INIT_PROMPT DBPROMPT_NOPROMPT R/W

DBPROP_INIT_PROVIDERSTRING N/A R/W

Rowset DBPROPSET_ROWSET DBPROP_ABORTPRESERVE VARIANT_FALSE R

DBPROP_ACCESSORDER DBPROPVAL_AO_RANDOM R

DBPROP_BLOCKINGSTORAGEOBJECTS VARIANT_FALSE R

DBPROP_CACHEDEFERRED VARIANT_FALSE R/W

DBPROP_CANHOLDROWS VARIANT_FALSE R

DBPROP_COMMITPRESERVE VARIANT_TRUE R/W

DBPROP_COMMANDTIMEOUT 0 R/W

DBPROP_DEFERRED VARIANT_FALSE R

DBPROP_IAccessor VARIANT_TRUE R

DBPROP_IColumnsInfo VARIANT_TRUE R

DBPROP_IColumnsRowset VARIANT_TRUE R

DBPROP_IConvertType VARIANT_TRUE R

DBPROP_IMultipleResults VARIANT_TRUE R

DBPROP_IRowset VARIANT_TRUE R

DBPROP_IRowChange VARIANT_FALSE R

DBPROP_IRowsetFind VARIANT_FALSE R

DBPROP_IRowsetIdentity VARIANT_TRUE R

DBPROP_IRowsetInfo VARIANT_TRUE R

DBPROP_IRowsetLocate VARIANT_FALSE R

DBPROP_IRowsetScroll VARIANT_FALSE R

DBPROP_IRowsetUpdate VARIANT_FALSE R

DBPROP_ISequentialStream VARIANT_TRUE R

DBPROP_ISupportErrorInfo VARIANT_TRUE R

DBPROP_LITERALIDENTITY VARIANT_TRUE R

DBPROP_LOCKMODE DBPROPVAL_LM_SINGLEROW R/W

DBPROP_MAXOPENROWS 0 R/W

DBPROP_MAXROWS 0 R/W

DBPROP_QUICKRESTART VARIANT_FALSE R/W

DBPROP_ROWTHREADMODEL DBPROPVAL_RT_FREETHREAD R

DBPROP_SERVERCURSOR VARIANT_TRUE R

DBPROP_UNIQUEROWS VARIANT_FALSE R

DBPROPSET_DB2ROWSET DBPROP_OPENROWSETSUPPORT DBPROPVAL_ORS_TABLE R

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 371

Table 26. Properties Supported by the IBM OLE DB Provider for DB2 (continued)
Property
Group

Property Set Properties Default Value R/W

DBPROP_ISLONGMINLENGTH 32000 R/W

Session DBPROPSET_SESSION DBPROP_SESS_AUTOCOMMITISOLEVELS DBPROPVAL_TI_CURSORSTABILITY R/W

Connections to Data Sources Using IBM OLE DB Provider

The following examples show how to connect to a DB2® data source using the
IBM® OLE DB Provider for DB2:

Example 1: Visual Basic application using ADO:
Dim db As ADODB.Connection
Set db = New ADODB.Connection
db.Provider = “IBMDADB2”
db.CursorLocation = adUseClient
...

Example 2: C/C++ application using IDBPromptInitialize and Data Links:
// Create DataLinks
hr = CoCreateInstance (

CLSID_DataLinks,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDBPromptInitialize,
(void**)&pIDBPromptInitialize);

// Invoke the DataLinks UI to select the provider and data source
hr = pIDBPromptInitialize–>PromptDataSource (

NULL,
GetDesktopWindow(),
DBPROMPTOPTIONS_PROPERTYSHEET,
0,
NULL,
NULL,
IID_IDBInitialize,
(IUnknown**)&pIDBInitialize);

Example 3: C/C++ application using IDataInitialize and Service
Component:
hr = CoCreateInstance (

CLSID_MSDAINITIALIZE,
NULL,
CLSCTX_INPROC_SERVER,
IID_IDataInitialize,
(void**)&pIDataInitialize);

hr = pIDataInitialize–>CreateDBInstance(
CLSID_IBMDADB2, // ClassID of IBMDADB2
NULL,

372 Programming Client Applications

CLSCTX_INPROC_SERVER,
NULL,
IID_IDBInitialize,
(IUnknown**)&pIDBInitialize);

ADO Applications

The sections that follow describe considerations for ADO applications.

ADO Connection String Keywords

To specify ADO (ActiveX Data Objects) connection string keywords, specify
the keyword using the keyword=value format in the provider (connection)
string. Delimit multiple keywords with a semicolon (;).

The following table describes the keywords supported by the IBM® OLE DB
Provider for DB2:

Table 27. Keywords Supported by the IBM OLE DB Provider for DB2®

Keyword Value Meaning

DSN Name of the database alias The DB2 database alias in the database
directory.

UID User ID The user ID used to connect to the DB2
server.

PWD Password of UID Password for the user ID used to connect
to the DB2 server.

Other DB2 CLI configuration keywords also affect the behavior of the IBM
OLE DB Provider.

Related reference:

v “CLI/ODBC Configuration Keywords Listing by Category” in the CLI Guide
and Reference, Volume 1

Connections to Data Sources with Visual Basic ADO Applications

To connect to a DB2® data source using the IBM® OLE DB Provider for DB2,
specify the IBMDADB2 provider name.

Related concepts:

v “Connections to Data Sources Using IBM OLE DB Provider” on page 372

Related tasks:

v “Building ADO Applications with Visual Basic” in the Application
Development Guide: Building and Running Applications

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 373

Updatable Scrollable Cursors in ADO Applications

Because the IBM® OLE DB Provider for DB2® natively supports read-only and
forward-only cursors, an ADO application that wants to access updatable
scrollable cursors must set the cursor location to adUseClient.

Limitations for ADO Applications

Following are the limitations for ADO applications:
v ADO applications calling stored procedures must have their parameters

created and explicitly bound. The Parameters.Refresh method for
automatically generating parameters is not yet supported.

v There is no support for default parameter values.
v For Visual Basic ADO applications, data controls are not supported for

server side cursors. Data controls are available, however, for client side
cursor applications.

v The WithEvents keyword cannot be used in the declaration of the recordset
object for Visual Basic ADO applications using the read-only/forward-only
server cursor; that is, when Cursor Location is specified as adUseServer.

IBM OLE DB Provider Support for ADO Methods and Properties

The IBM OLE DB Provider supports the following ADO methods and
properties:

Table 28. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support

Command
Methods

Cancel ICommand Yes

CreateParameter Yes

Execute Yes

Command
Properties

ActiveConnection (ADO specific)

Command Text ICommandText Yes

Command Timeout ICommandProperties::SetProperties
DBPROP_COMMANDTIMEOUT

Yes

CommandType (ADO specific)

Prepared ICommandPrepare Yes

State (ADO specific)

Command
Collection

Parameters ICommandWithParameter
DBSCHEMA

_PROCEDURE_PARAMETERS

Yes

Properties ICommandProperties
IDBProperties

Yes

374 Programming Client Applications

Table 28. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support

Connection
Methods

BeginTrans
CommitTrans
RollbackTrans

ITransactionLocal Yes (but not nested)
Yes (but not nested)
Yes (but not nested)

Execute ICommand
IOpenRowset

Yes

Open IDBCreateSession
IDBInitialize

Yes

OpenSchema
adSchemaColumnPrivileges
adSchemaColumns
adSchemaForeignKeys
adSchemaIndexes
adSchemaPrimaryKeys
adSchemaProcedureParam
adSchemaProcedures
adSchemaProviderType
adSchemaStatistics
adSchemaTablePrivileges
adSchemaTables

IDBSchemaRowset
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Cancel Yes

Connection
Properties

Attributes
adXactCommitRetaining
adXactRollbackRetaining

ITransactionLocal
Yes
Yes

CommandTimeout ICommandProperties
DBPROP_COMMAND_TIMEOUT

Yes

ConnectionString (ADO specific)

ConnectionTimeout IDBProperties
DBPROP_INIT_TIMEOUT

No

CursorLocation:
adUseClient
adUseNone
adUseServer

(Use OLE DB Cursor Service)
(Not Used)
(Not Updatable Foward Only)

Yes
No
Yes

DefaultDataBase IDBProperties
DBPROP_CURRENTCATALOG

No

IsolationLevel ITransactionLocal
DBPROP_SESS

_AUTOCOMMITSOLEVELS

Yes

Mode
adModeRead
adModeReadWrite
adModeShareDenyNone
adModeShareDenyRead
adModeShareDenyWrite
adModeShareExclusive
adModeUnknown
adModeWrite

IDBProperties
DBPROP_INIT_MODE No

Yes
No
No
No
No
No
No

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 375

Table 28. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support

Provider ISourceRowset::GetSourceRowset Yes

State (ADO specific)

Version (ADO specific)

Connection
Collection

Errors IErrorRecords Yes

Properties IDBProperties Yes

Error
Properties

Description
NativeError
Number
Source
SQLState

IErrorRecords Yes
Yes
Yes
Yes
No

HelpContext
HelpFile

No
No

Field Methods AppendChunk
GetChunk

ISequentialStream Yes
Yes

Field
Properties

Actual Size IAccessor
IRowset

Yes

Attributes
DataFormat
DefinedSize
Name
NumericScale
Precision
Type

IColumnInfo
Yes
Yes
Yes
Yes
Yes
Yes

OriginalValue IRowsetUpdate Yes (Cursor Service)

UnderlyingValue IRowsetRefresh

IRowsetResynch

Yes
(Cursor Service)

Yes
(Cursor Service)

Value IAccessor
IRowset

Yes

Field
Collection

Properties IDBProperties
IRowsetInfo

Yes

Parameter
Methods

AppendChunk ISequentialStream Yes

Attributes
Direction
Name
NumericScale
Precision
Scale
Size
Type

ICommandWithParameter
DBSCHEMA

_PROCEDURE_PARAMETERS
Yes
No
Yes
Yes
Yes
Yes
Yes

Value IAccessor
ICommand

Yes

376 Programming Client Applications

Table 28. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support

Parameter
Collection

Properties Yes

RecordSet
Methods

AddNew IRowsetChange Yes (Cursor Service)

Cancel Yes

CancelBatch IRowsetUpdate::Undo Yes (Cursor Service)

CancelUpdate Yes (Cursor Service)

Clone IRowsetLocate Yes (Cursor Service)

Close IAccessor
IRowset

Yes

CompareBookmarks No

Delete IRowsetChange Yes (Cursor Service)

GetRows IAccessor
IRowset

Yes (Cursor Service)

Move IRowset
IRowsetLocate

Server Cursor:
forward only

Cursor Service:
scrollable

MoveFirst IRowset
IRowsetLocate

Yes (Cursor Service)

MoveNext IRowset
IRowsetLocate

Yes (Cursor Service)

MoveLast IRowsetLocate Yes (Cursor Service)

MovePrevious IRowsetLocate Yes (Cursor Service)

NextRecordSet IMultipleResults Yes

Open ICommand
IOpenRowset

Yes

Requery ICommand
IOpenRowset

Yes

Resync IRowsetRefresh Yes (Cursor Service)

Supports IRowsetInfo Yes

Update
UpdateBatch

IRowsetChange
IRowsetUpdate

Yes (Cursor Service)
Yes (Cursor Service)

RecordSet
Properties

AbsolutePage IRowsetLocate
IRowsetScroll

Yes (Cursor Service)

AbsolutePosition IRowsetLocate
IRowsetScroll

Yes (Cursor Service)

ActiveConnection IDBCreateSession
IDBInitialize

Yes

BOF (ADO specific)

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 377

Table 28. ADO Methods and Properties Supported by the IBM OLE DB Provider for DB2 (continued)

ADO Method/Property OLE DB Interface/Property IBM OLE DB Support

Bookmark IAccessor
IRowsetLocate

Yes (Cursor Service)

CacheSize cRows in IRowsetLocate
IRowset

Yes

CursorType
adOpenDynamic
adOpenForwardOnly
adOpenKeySet
adOpenStatic

ICommandProperties
No
Yes
No
Yes (Cursor Service)

EditMode IRowsetUpdate Yes (Cursor Service)

EOF (ADO specific)

Filter IRowsetLocate
IRowsetView
IRowsetUpdate
IViewChapter
IViewFilter

No

LockType ICommandProperties No

MarshallOption No

MaxRecords ICommandProperties
IOpenRowset

Yes

PageCount IRowsetScroll Yes (Cursor Service)

PageSize (ADO specific)

Sort (ADO specific)

Source (ADO specific)

State (ADO specific)

Status IRowsetUpdate Yes (Cursor Service)

RecordSet
Collection

Fields IColumnInfo Yes

Properties IDBProperties
IRowsetInfo::GetProperties

Yes

C and C++ Applications

The sections that follow describe considerations for C and C++ applications.

Compilation and Linking of C/C++ Applications and the IBM OLE DB
Provider

C/C++ applications that use the constant CLSID_IBMDADB2 must include
the ibmdadb2.h file, which can be found in the SQLLIB\include directory.
These applications must define the DBINITCONSTANTS before the include
statement. The following example shows the correct sequence of statements:

378 Programming Client Applications

#define DBINITCONSTANTS
#include "ibmdadb2.h"

Connections to Data Sources in C/C++ Applications using the IBM OLE
DB Provider

To connect to a DB2® data source using the IBM® OLE DB Provider for DB2
in a C/C++ application, use one of the two OLE DB core interfaces,
IDBPromptInitialize or IDataInitialize. Connecting to the data source in
this way grants the application access to updatable scrollable cursors, instead
of the read-only and forward-only cursors natively available. If IBMDADB2 is
created directly by calling the COM API CoCreateInstance, the available
cursors will be read-only and forward-only. The IDataInitialize interface is
exposed by the OLE DB Service Component, and the IDBPromptInitialize is
exposed by the Data Links Component.

Related concepts:

v “Connections to Data Sources Using IBM OLE DB Provider” on page 372

Related tasks:

v “Building ADO Applications with Visual C++” in the Application
Development Guide: Building and Running Applications

Updatable Scrollable Cursors in ATL Applications and the IBM OLE DB
Provider

If an ATL (Active Template Library) application requires updatable scrollable
cursors, and its Data Access Consumer Object was generated by ATL COM
AppWizard, the application must use the OpenWithServiceComponents method
instead of the Open method call (which the wizard generates by default). If the
Open method is used, the available cursors will be read-only and forward-only.
The following example shows how to use the OpenWithServiceComponents
method:
// The following line is generated by the wizard in the OpenDataSource method
// hr = db.Open(_T(“IBMDADB2”), &dbinit);
// Replace it with the following:
hr = db.OpenWithServiceComponents(_T(“IBMDADB2”), &dbinit);

MTS and COM+ Distributed Transactions

The sections that follow describe considerations for MTS and COM+
distributed transactions.

Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers 379

MTS and COM+ Distributed Transaction Support and the IBM OLE DB
Provider

OLE DB applications running in either a Microsoft® Transaction Server (MTS)
environment on Windows® NT or a Component Services (COM+)
environment on Windows 2000 can use the ITransactionJoin interface to
participate in distributed transactions with multiple DB2® Universal Database,
host, and iSeries database servers as well as other resource managers that
comply with the MTS/COM+ specifications.

Prerequisites:

To use the MTS or COM+ distributed transaction support offered by the IBM®

OLE DB Provider for DB2, ensure that your server meets the following
prerequisites.

Note: These requirements are only for the Windows machine where the DB2
client is installed.

v Windows NT® with MTS at Version 2.0 with Microsoft Hotfix 0772 or later,
or Windows 2000
MTS Version 2.0 for Windows NT is available as part of the Windows NT
4.0 Option Pack. You can download the Option Pack from:

http://www.microsoft.com/ntserver/nts/downloads/recommended/NT4OptPk/

Enablement of MTS Support in DB2 Universal Database for C/C++
Applications

To run a C or C++ application in MTS or COM+ transactional mode, you can
create the IBMDABD2 data source instance using the DataLink interface. You
could also use CoCreateInstance, get a session object, and use
JoinTransaction. See the description of how to connect a C or C++
application to a data source for more information.

To run an ADO application in MTS or COM+ transactional mode, see the
description of how to connect a C or C++ application to a data source.

To use a component in an MTS or COM+ package in transactional mode, set
the Transactions property of the component to one of the following values:
v “Required”
v “Required New”
v “Supported”

For information about these values, see the MTS documentation.

380 Programming Client Applications

Part 5. General DB2 Application Concepts

© Copyright IBM Corp. 1993-2002 381

382 Programming Client Applications

Chapter 15. National Language Support

Collating Sequence Overview 383
Collating Sequences 383
Character Comparisons Based on
Collating Sequences 385
Case Independent Comparisons Using the
TRANSLATE Function 386
Differences Between EBCDIC and ASCII
Collating Sequence Sort Orders 387
Collating Sequence Specified when
Database Is Created 388
Sample Collating Sequences 390

Code Pages and Locales 391
Derivation of Code Page Values 391
Derivation of Locales in Application
Programs 391
How DB2 Derives Locales 392

Application Considerations 392
National Language Support and
Application Development Considerations . 393
National Language Support and SQL
Statements 394
Remote Stored Procedures and UDFs . . 395
Package Name Considerations in Mixed
Code Page Environments 396
Active Code Page for Precompilation and
Binding 396
Active Code Page for Application
Execution 397
Character Conversion Between Different
Code Pages 397
When Code Page Conversion Occurs . . 397

Character Substitutions During Code
Page Conversions 398
Supported Code Page Conversions . . . 399
Code Page Conversion Expansion Factor 400

DBCS Character Sets 401
Extended UNIX Code (EUC) Character Sets 402
CLI, ODBC, JDBC, and SQLj Programs in a
DBCS Environment 403
Considerations for Japanese and Traditional
Chinese EUC and UCS-2 Code Sets 404

Japanese and Traditional Chinese EUC
and UCS-2 Code Set Considerations . . 404
Mixed EUC and Double-Byte Client and
Database Considerations 405
Character Conversion Considerations for
Traditional Chinese Users 406
Graphic Data in Japanese or Traditional
Chinese EUC Applications 406
Application Development in Unequal
Code Page Situations 408
Client-Based Parameter Validation in a
Mixed Code Set Environment 412
DESCRIBE Statement in Mixed Code Set
Environments 413
Fixed-Length and Variable-Length Data in
Mixed Code Set Environments 414
Code Page Conversion String-Length
Overflow in Mixed Code Set
Environments 415
Applications Connected to Unicode
Databases 417

Collating Sequence Overview

The sections that follow describe collating sequences, and how character
comparisons are performed.

Collating Sequences

The database manager compares character data using a collating sequence. This
is an ordering for a set of characters that determines whether a particular
character sorts higher, lower, or the same as another.

Note: Character string data defined with the FOR BIT DATA attribute, and
BLOB data, is sorted using the binary sort sequence.

© Copyright IBM Corp. 1993-2002 383

For example, a collating sequence can be used to indicate that lowercase and
uppercase versions of a particular character are to be sorted equally.

The database manager allows databases to be created with custom collating
sequences. The following sections help you determine and implement a
particular collating sequence for a database.

Each single-byte character in a database is represented internally as a unique
number between 0 and 255 (in hexadecimal notation, between X'00' and X'FF').
This number is referred to as the code point of the character; the assignment of
numbers to characters in a set is collectively called a code page. A collating
sequence is a mapping between the code point and the desired position of
each character in a sorted sequence. The numeric value of the position is
called the weight of the character in the collating sequence. In the simplest
collating sequence, the weights are identical to the code points. This is called
the identity sequence.

For example, suppose the characters B and b have the code points X'42' and
X'62', respectively. If (according to the collating sequence table) they both have
a sort weight of X'42' (B), they collate the same. If the sort weight for B is
X'9E', and the sort weight for b is X'9D', b will be sorted before B. The
collation sequence table specifies the weight of each character. The table is
different from a code page, which specifies the code point of each character.

Consider the following example. The ASCII characters A through Z are
represented by X'41' through X'5A'. To describe a collating sequence in which
these characters are sorted consecutively (no intervening characters), you can
write: X'41', X'42', ... X'59', X'5A'.

The hexadecimal value of a multi-byte character is also used as the weight.
For example, suppose the code points for the double-byte characters A and B
are X'8260' and X'8261' respectively, then the collation weights for X'82', X'60',
and X'61' are used to sort these two characters according to their code points.

The weights in a collating sequence need not be unique. For example, you
could give uppercase letters and their lowercase equivalents the same weight.

Specifying a collating sequence can be simplified if the collating sequence
provides weights for all 256 code points. The weight of each character can be
determined using the code point of the character.

In all cases, DB2® uses the collation table that was specified at database
creation time. If you want the multi-byte characters to be sorted the way that
they appear in their code point table, you must specify IDENTITY as the
collation sequence when you create the database.

384 Programming Client Applications

Note: For double-byte and Unicode characters in GRAPHIC fields, the sort
sequence is always IDENTITY.

Once a collating sequence is defined, all future character comparisons for that
database will be performed with that collating sequence. Except for character
data defined as FOR BIT DATA or BLOB data, the collating sequence will be
used for all SQL comparisons and ORDER BY clauses, and also in setting up
indexes and statistics.

Potential problems can occur in the following cases:
v An application merges sorted data from a database with application data

that was sorted using a different collating sequence.
v An application merges sorted data from one database with sorted data from

another, but the databases have different collating sequences.
v An application makes assumptions about sorted data that are not true for

the relevant collating sequence. For example, numbers collating lower than
alphabetics may or may not be true for a particular collating sequence.

A final point to remember is that the results of any sort based on a direct
comparison of character code points will only match query results that are
ordered using an identity collating sequence.

Related concepts:

v “Character conversion” in the SQL Reference, Volume 1

v “Character Comparisons Based on Collating Sequences” on page 385

Character Comparisons Based on Collating Sequences

Once a collating sequence is established, character comparison is performed
by comparing the weights of two characters, instead of directly comparing
their code point values.

If weights that are not unique are used, characters that are not identical may
compare equally. Because of this, string comparison can become a two-phase
process:
1. Compare the characters in each string based on their weights.
2. If step 1 yields equality, compare the characters of each string based on

their code point values.

If the collating sequence contains 256 unique weights, only the first step is
performed. If the collating sequence is the identity sequence, only the second
step is performed. In either case, there is a performance benefit.

Related concepts:

Chapter 15. National Language Support 385

v “Character conversion” in the SQL Reference, Volume 1

Case Independent Comparisons Using the TRANSLATE Function

To perform character comparisons that are independent of case, you can use
the TRANSLATE function to select and compare mixed case column data by
translating it to uppercase (for purposes of comparison only). Consider the
following data:

Abel
abels
ABEL
abel
ab
Ab

The following SELECT statement:
SELECT c1 FROM T1 WHERE TRANSLATE(c1) LIKE ’AB%’

returns
ab
Ab
abel
Abel
ABEL
abels

You could also specify the following SELECT statement when creating view
″v1″, make all comparisons against the view in uppercase, and request table
INSERTs in mixed case:

CREATE VIEW v1 AS SELECT TRANSLATE(c1) FROM T1

At the database level, you can set the collating sequence as part of the
sqlecrea - Create Database API. This allows you to decide if ″a″ is processed
before ″A″, or if ″A″ is processed after ″a″, or if they are processed with equal
weighting. This will make them equal when collating or sorting using the
ORDER BY clause. ″A″ will always come before ″a″, because they are equal in
every sense. The only basis upon which to sort is the hexadecimal value.

Thus
SELECT c1 FROM T1 WHERE c1 LIKE ’ab%’

returns
ab
abel
abels

and

386 Programming Client Applications

SELECT c1 FROM T1 WHERE c1 LIKE ’A%’

returns
Abel
Ab
ABEL

The following statement
SELECT c1 FROM T1 ORDER BY c1

returns
ab
Ab
abel
Abel
ABEL
abels

Thus, you may want to consider using the scalar function TRANSLATE(), as
well as sqlecrea. Note that you can only specify a collating sequence using
sqlecrea. You cannot specify a collating sequence from the command line
processor (CLP).

You can also use the UCASE function as follows, but note that DB2® performs
a table scan instead of using an index for the select:

SELECT * FROM EMP WHERE UCASE(JOB) = ’NURSE’

Related reference:

v “TRANSLATE scalar function” in the SQL Reference, Volume 1

v “UCASE or UPPER scalar function” in the SQL Reference, Volume 1

v “sqlecrea - Create Database” in the Administrative API Reference

Differences Between EBCDIC and ASCII Collating Sequence Sort Orders

The order in which data in a database is sorted depends on the collating
sequence defined for the database. For example, suppose that database A uses
the EBCDIC code page’s default collating sequence and that database B uses
the ASCII code page’s default collating sequence. Sort orders at these two
databases would differ, as shown in the following example:

Chapter 15. National Language Support 387

Similarly, character comparisons in a database depend on the collating
sequence defined for that database. So if database A uses the EBCDIC code
page’s default collating sequence and database B uses the ASCII code page’s
default collating sequence, the results of character comparisons at the two
databases would differ. The difference is as follows:

If you are creating a federated database, consider specifying that your
collating sequence matches the collating sequence at a data source. This
approach will maximize “pushdown” opportunities and possibly increase
query performance.

Related concepts:

v “Guidelines for analyzing where a federated query is evaluated” in the
Administration Guide: Performance

Collating Sequence Specified when Database Is Created

The collating sequence for a database is specified at database creation time.
Once the database has been created, the collating sequence cannot be changed.

SELECT.....
ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2
---- ----
V1G 7AB
Y2W V1G
7AB Y2W

Figure 7. Example of How a Sort Order in an EBCDIC-Based Sequence Differs from a Sort Order in an ASCII-Based
Sequence

SELECT.....
WHERE COL2 > ’TT3’

EBCDIC-Based Results ASCII-Based Results

COL2 COL2
---- ----
TW4 TW4
X72 X72
39G

Figure 8. Example of How a Comparison of Characters in an EBCDIC-Based Sequence Differs from a Comparison of
Characters in an ASCII-Based Sequence

388 Programming Client Applications

The CREATE DATABASE API accepts a data structure called the Database
Descriptor Block (SQLEDBDESC). You can define your own collating sequence
within this structure.

Note: You can only define your own collating sequence for a single-byte
database.

To specify a collating sequence for a database:
v Pass the desired SQLEDBDESC structure, or
v Pass a NULL pointer. The collating sequence of the operating system (based

on current country/region code and code page) is used. This is the same as
specifying SQLDBCSS equal to SQL_CS_SYSTEM (0).

The SQLEDBDESC structure contains:

SQLDBCSS A 4-byte integer indicating the source of the database collating
sequence. Valid values are:

SQL_CS_SYSTEM
The collating sequence of the operating system
(based on current country/region code and
code page) is used.

SQL_CS_SYSTEM_NLSCHAR
Collating sequence from user using the NLS
version of compare routines for character
types

SQL_CS_IDENTITY_16BIT
A Unicode database can be created with the
SQL_CS_IDENTITY_16BIT collation option.
SQL_CS_DENTITY_16BIT differs from the
default SQL_CS_NONE collation option in
that the CHAR, VARCHAR, LONG
VARCHAR, and CLOB data in the Unicode
database will be collated using the CESU-8
binary order instead of the UTF-8 binary
order. CESU-8 is Compatibility Encoding
Scheme for UTF-16: 8-Bit, and as of this
writing, its specification is contained in the
Draft Unicode Technical Report #26 available
at the Unicode Technical Consortium web site
(www.unicode.org). CESU-8 is binary identical
to UTF-8 except for the Unicode
supplementary characters, that is, those
characters that are defined outside the 16-bit
Basic Multilingual Plane (BMP or Plane 0). In
UTF-8 encoding, a supplementary character is

Chapter 15. National Language Support 389

http://www.unicode.org

represented by one 4-byte sequence, but the
same character in CESU-8 requires two 3-byte
sequences. In a Unicode database, CHAR,
VARCHAR, LONG VARCHAR, and CLOB
data are stored in UTF-8, and GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC, and
DBCLOB data are stored in UCS-2. For
SQL_CS_NONE collation, non-supplementary
characters in UTF-8 and UCS-2 have identical
binary collation, but supplementary characters
in UTF-8 collate differently from the same
characters in UCS-2.
SQL_CS_IDENTITY_16BIT ensures all
characters, supplementary and
non-supplementary, in a DB2® Unicode
databases have the same binary collation.

SQL_CS_USER
The collating sequence is specified by the
value in the SQLDBUDC field.

SQL_CS_NONE
The collating sequence is the identity
sequence. Strings are compared byte for byte,
starting with the first byte, using a simple
code point comparison.

Note: These constants are defined in the SQLENV include file.

SQLDBUDC A 256-byte field. The nth byte contains the sort weight of the
nth character in the code page of the database. If SQLDBCSS
is not equal to SQL_CS_USER, this field is ignored.

Related reference:

v “sqlecrea - Create Database” in the Administrative API Reference

Sample Collating Sequences

Several sample collating sequences are provided (as include files) to facilitate
database creation using the EBCDIC collating sequences instead of the default
workstation collating sequence.

The collating sequences in these include files can be specified in the
SQLDBUDC field of the SQLEDBDESC structure. They can also be used as
models for the construction of other collating sequences.

Include files that contain collating sequences are available for the following
host languages:

390 Programming Client Applications

v C/C++
v COBOL
v FORTRAN

Related reference:

v “Include Files for C and C++” on page 163
v “Include Files for COBOL” on page 214
v “Include Files for FORTRAN” on page 239

Code Pages and Locales

The sections that follow describe code pages, and how code pages and locales
are derived.

Derivation of Code Page Values

The application code page is derived from the active environment when the
database connection is made. If the DB2CODEPAGE registry variable is set, its
value is taken as the application code page. However, it is not necessary to set
the DB2CODEPAGE registry variable because DB2® will determine the
appropriate code page value from the operating system. Setting the
DB2CODEPAGE registry variable to incorrect values may cause unpredictable
results.

The database code page is derived from the value specified (explicitly or by
default) at the time the database is created. For example, the following defines
how the active environment is determined in different operating environments:

UNIX® On UNIX-based operating systems, the active environment is
determined from the locale setting, which includes
information about language, territory and code set.

Windows® operating systems
For all Windows operating systems, if the DB2CODEPAGE
environment variable is not set, the code page is derived from
the ANSI code page setting in the Registry.

Related reference:

v “Supported territory codes and code pages” in the Administration Guide:
Planning

Derivation of Locales in Application Programs

Locales are implemented one way on Windows® and another way on
UNIX-based systems. There are two locales on UNIX-based systems:

Chapter 15. National Language Support 391

v The environment locale allows you to specify the language, currency
symbol, and so on, that you want to use.

v The program locale contains the current language, currency symbol, and so
on, of a program that is running.

On Windows systems, cultural preferences can be set through Regional
Settings on the Control Panel. However, there is no environment locale like
the one on UNIX-based systems.

When your program is started, it gets a default C locale. It does not get a copy
of the environment locale. If you set the program locale to any locale other
than ″C″, DB2 Universal Database uses your current program locale to
determine the code page and territory settings for your application
environment. Otherwise, these values are obtained from the operating system
environment. Note that setlocale() is not thread-safe, and if you issue
setlocale() from within your application, the new locale is set for the entire
process.

How DB2 Derives Locales

On UNIX-based systems, the active locale used by DB2® is determined from
the LC_CTYPE portion of the locale. For details, see the NLS documentation
for your operating system.
v If LC_CTYPE of the program locale has a value other than C, DB2 will use

this value to determine the application code page by mapping it to its
corresponding code page.

v If LC_CTYPE has a value of C (the C locale), DB2 will set the program
locale according to the environment locale, using the setlocale() function.

v If LC_CTYPE still has a value of C, DB2 will assume the default of the US
English environment, and code page 819 (ISO 8859-1).

v If LC_CTYPE no longer has a value of C, its new value will be used to map
to a corresponding code page.

Related reference:

v “Supported territory codes and code pages” in the Administration Guide:
Planning

Application Considerations

The sections that follow describe considerations that you should be aware of
when coding an application.

392 Programming Client Applications

National Language Support and Application Development Considerations

Constant character strings in static SQL statements are converted at bind time,
from the application code page to the database code page, and will be used at
execution time in this database code page representation. To avoid such
conversions if they are not desired, you can use host variables in place of
string constants.

If your program contains constant character strings, you should precompile,
bind, compile, and execute the application using the same code page. For a
Unicode database, you should use host variables instead of using string
constants. The reason for this recommendation is that data conversions by the
server can occur in both the bind and the execution phases. This could be a
concern if constant character strings are used within the program. These
embedded strings are converted at bind time based on the code page which is
in effect during the bind phase. Seven-bit ASCII characters are common to all
the code pages supported by DB2 Universal Database and will not cause a
problem. For non-ASCII characters, users should ensure that the same
conversion tables are used by binding and executing with the same active
code page.

Any external data obtained by the application will be assumed to be in the
application code page. This includes data obtained from a file or from user
input. Make sure that data from sources outside the application uses the same
code page as the application.

If you use host variables that use graphic data in your C or C++ applications,
there are special precompiler, application performance, and application design
issues you need to consider. If you deal with EUC code sets in your
applications, refer to the applicable topics for guidelines.

When developing an application, you should review the topics that follow
this one. Failure to follow the recomentations described in these topics can
produce unpredictable conditions. These conditions cannot be detected by the
database manager, so no error or warning message will result. For example, a
C application contains the following SQL statements operating against a table
T1 with one column defined as C1 CHAR(20):

(0) EXEC SQL CONNECT TO GLOBALDB;
(1) EXEC SQL INSERT INTO T1 VALUES (’a-constant’);

strcpy(sqlstmt, "SELECT C1 FROM T1 WHERE C1=’a-constant’);
(2) EXEC SQL PREPARE S1 FROM :sqlstmt;

Where:
application code page at bind time = x
application code page at execution time = y
database code page = z

Chapter 15. National Language Support 393

At bind time, 'a-constant' in statement (1) is converted from code page x to
code page z. This conversion can be noted as (x→z).

At execution time, 'a-constant' (x→z) is inserted into the table when statement
(1) is executed. However, the WHERE clause of statement (2) will be executed
with 'a-constant' (y→z). If the code points in the constant are such that the two
conversions (x→z and y→z) yield different results, the SELECT in statement (2)
will fail to retrieve the data inserted by statement (1).

Related concepts:

v “Graphic Host Variables in C and C++” on page 176
v “Derivation of Code Page Values” on page 391
v “Japanese and Traditional Chinese EUC and UCS-2 Code Set

Considerations” on page 404

National Language Support and SQL Statements

The coding of SQL statements is not language dependent. The SQL keywords
must be typed as shown, although they may be typed in uppercase,
lowercase, or mixed case. The names of database objects, host variables and
program labels that occur in an SQL statement must be characters supported
by your application code page.

The server does not convert file names. To code a file name, either use the
ASCII invariant set, or provide the path in the hexadecimal values that are
physically stored in the file system.

In a multi-byte environment, there are four characters which are considered
special that do not belong to the invariant character set. These characters are:
v The double-byte percentage and double-byte underscore characters used in

LIKE processing.
v The double-byte space character, used for, among other things, blank

padding in graphic strings.
v The double-byte substitution character, used as a replacement during code

page conversion when no mapping exists between a source code page and
a target code page.

The code points for each of these characters, by code page, is as follows:

Table 29. Code Points for Special Double-Byte Characters

Code Page Double-Byte
Percentage

Double-Byte
Underscore

Double-Byte
Space

Double-Byte
Substitution
Character

932 X'8193' X'8151' X'8140' X'FCFC'

394 Programming Client Applications

Table 29. Code Points for Special Double-Byte Characters (continued)

Code Page Double-Byte
Percentage

Double-Byte
Underscore

Double-Byte
Space

Double-Byte
Substitution
Character

938 X'8193' X'8151' X'8140' X'FCFC'

942 X'8193' X'8151' X'8140' X'FCFC'

943 X'8193' X'8151' X'8140' X'FCFC'

948 X'8193' X'8151' X'8140' X'FCFC'

949 X'A3A5' X'A3DF' X'A1A1' X'AFFE'

950 X'A248' X'A1C4' X'A140' X'C8FE'

954 X'A1F3' X'A1B2' X'A1A1' X'F4FE'

964 X'A2E8' X'A2A5' X'A1A1' X'FDFE'

970 X'A3A5' X'A3DF' X'A1A1' X'AFFE'

1381 X'A3A5' X'A3DF' X'A1A1' X'FEFE'

1383 X'A3A5' X'A3DF' X'A1A1' X'A1A1'

13488 X'FF05' X'FF3F' X'3000' X'FFFD'

1363 X'A3A5' X'A3DF' X'A1A1' X'A1E0'

1386 X'A3A5' X'A3DF' X'A1A1' X'FEFE'

5039 X'8193' X'8151' X'8140' X'FCFC'

For Unicode databases, the GRAPHIC space is X'0020', which is different from
the GRAPHIC space of X'3000' used for euc-Japan and euc-Taiwan databases.
Both X'0020' and X'3000' are space characters in the Unicode standard. The
difference in the GRAPHIC space code points should be taken into
consideration when comparing data from these EUC databases to data from a
Unicode database.

Related reference:

v “LIKE predicate” in the SQL Reference, Volume 1

v “Extended UNIX Code (EUC) Character Sets” on page 402

Remote Stored Procedures and UDFs

When coding stored procedures that will be running remotely, the following
considerations apply:
v Data in a stored procedure must be in the database code page.
v Data passed to or from a stored procedure using an SQLDA with a

character data type must really contain character data. Numeric data and
data structures must never be passed with a character type if the client

Chapter 15. National Language Support 395

application code page is different from the database code page. The reason
for this is that the server will convert all character data in an SQLDA. To
avoid character conversion, you can pass data by defining it in binary
string format by using a data type of BLOB or by defining the character
data as FOR BIT DATA.

By default, when you invoke DB2® DARI stored procedures and UDFs, they
run under a default national language environment, which may not match the
database’s national language environment. Consequently, using
country/region or code-page-specific operations, such as the C wchar_t
graphic host variables and functions, may not work as you expect. You need
to ensure that, if applicable, the correct environment is initialized when you
invoke the stored procedure or UDF.

Package Name Considerations in Mixed Code Page Environments

Package names are determined when you invoke the PRECOMPILE
PROGRAM command or API. By default, they are generated based on the
first eight bytes of the application program source file (without the file
extension) and are folded to upper case. Optionally, a name can be explicitly
defined. Regardless of the origin of a package name, if you are running in an
unequal code page environment, the characters for your package names
should be in the invariant character set. Otherwise you may experience
problems related to the modification of your package name. The database
manager will not be able to find the package for the application or a
client-side tool will not display the right name for your package.

A package name modification due to character conversion will occur if any of
the characters in the package name are not directly mapped to a valid
character in the database code page. In such cases, a substitution character
replaces the character that is not converted. After such a modification, the
package name, when converted back to the application code page, may not
match the original package name. An example of a case where this behavior is
undesirable is when you use the Control Center to list and work with
packages. Package names displayed may not match the expected names.

To avoid conversion problems with package names, ensure that only
characters are used which are valid under both the application and database
code pages.

Active Code Page for Precompilation and Binding

At precompile/bind time, the precompiler is the executing application. The
active code page when the database connection was made prior to the
precompile request is used for precompiled statements, and any character
data returned in the SQLCA.

396 Programming Client Applications

Related concepts:

v “Active Code Page for Application Execution” on page 397

Active Code Page for Application Execution

At execution time, the active code page of the user application when a
database connection is made is in effect for the duration of the connection. All
data is interpreted based on this code page; this includes dynamic SQL
statements, user input data, user output data, and character fields in the
SQLCA.

Related concepts:

v “Active Code Page for Precompilation and Binding” on page 396

Character Conversion Between Different Code Pages

Ideally, for optimal performance, your applications should always use the
same code page as your database. However, this is not always practical or
possible. The DB2® products provide support for code page conversion that
allows your application and database to use different code pages. Characters
from one code page must be mapped to the other code page to maintain data
integrity.

When Code Page Conversion Occurs

Code page conversion can occur in the following situations:
v When a client or application accessing a database is running in a code page

that is different from the code page of the database:
This conversion will occur on the application client for both conversions
from the application code page to the database code page and from the
database code page to the application code page.
You can minimize or eliminate client/server character conversion in some
situations. For example, you could:
– Create a database on Windows NT using code page 850 to match a

Windows® client application environment that predominately uses code
page 850.
If a Windows ODBC application is used with the IBM® DB2® ODBC
driver in Windows database client, this problem may be alleviated by the
use of the TRANSLATEDLL and TRANSLATEOPTION keywords in the
odbc.ini or db2cli.ini file.

– Create a database on AIX® using code page 850 to match a client
application environment that predominately uses code page 850.

v When a client or application importing a PC/IXF file runs in a code page
that is different from the file being imported.

Chapter 15. National Language Support 397

This data conversion will occur on the database client machine before the
client accesses the database server. Additional data conversion may take
place if the application is running in a code page that is different from the
code page of the database (as stated in the previous point).
Data conversion, if any, also depends on how the import utility was called.

v When DB2 Connect is used to access data on a host, AS/400, or iSeries
server. In this case, the data receiver converts the character data. For
example, data that is sent to DB2 for MVS/ESA is converted to the
appropriate MVS™ coded character set identifier (CCSID) by DB2 for
MVS/ESA. The data sent back to the DB2 Connect machine from DB2 for
MVS/ESA is converted by DB2 Connect.

Character conversion will not occur for:
v File names. You should either use the ASCII invariant set for file names or

provide the file name in the hexadecimal values that are physically stored
in the file system. Note that if you include a file name as part of an SQL
statement, it gets converted as part of the statement conversion.

v Data that is targeted for or comes from a column assigned the FOR BIT
DATA attribute, or data used in an SQL operation whose result is FOR BIT
or BLOB data. In these cases, the data is treated as a byte stream and no
conversion occurs.

Note: A literal inserted into a column defined as FOR BIT DATA could be
converted if that literal was part of an SQL statement that was
converted.

v A DB2 product or platform that does not support, or that does not have
support installed, for the desired combination of code pages. In this case, an
SQLCODE -332 (SQLSTATE 57017) is returned when you try to run your
application.

Related concepts:

v “Character conversion” in the SQL Reference, Volume 1

Character Substitutions During Code Page Conversions

When your application converts from one code page to another, it is possible
that one or more characters are not represented in the target code page. If this
occurs, DB2 inserts a substitution character into the target string in place of the
character that has no representation. The replacement character is then
considered a valid part of the string. In situations where a substitution occurs,
the SQLWARN10 indicator in the SQLCA is set to ‘W’.

Note: Any character conversions resulting from using the WCHARTYPE
CONVERT precompiler option will not flag a warning if any
substitutions take place.

398 Programming Client Applications

Related concepts:

v “WCHARTYPE Precompiler Option in C and C++” on page 194

Related reference:

v “PRECOMPILE” in the Command Reference

Supported Code Page Conversions

When data conversion occurs, conversion will take place from a source code
page to a target code page.

The source code page is determined from the source of the data; data from the
application has a source code page equal to the application code page, and
data from the database has a source code page equal to the database code
page.

The determination of target code page is more involved; where the data is to
be placed, including rules for intermediate operations, is considered:
v If the data is moved directly from an application into a database, with no

intervening operations, the target code page is the database code page.
v If the data is being imported into a database from a PC/IXF file, there are

two character conversion steps:
1. From the PC/IXF file code page (source code page) to the application

code page (target code page)
2. From the application code page (source code page) to the database code

page (target code page)

Exercise caution in situations where two conversion steps might occur. To
avoid a possible loss of character data, ensure you follow the supported
character conversions. Additionally, within each group, only characters that
exist in both the source and target code page have meaningful conversions.
Other characters are used as substitutions and are only useful for converting
from the target code page back to the source code page (and may not
necessarily provide meaningless conversions in the two-step conversion
process mentioned above). Such problems are avoided if the application
code page is the same as the database code page.

v If the data is derived from operations performed on character data, where
the source may be any of the application code page, the database code
page, FOR BIT DATA, or for BLOB data, data conversion is based on a set
of rules. Some or all of the data items may have to be converted to an
intermediate result, before the final target code page can be determined.

Note: Code page conversions between multi-byte code pages, for example
DBCS and EUC, may result in either an increase or a decrease in the
length of the string.

Chapter 15. National Language Support 399

Related concepts:

v “Character conversion” in the SQL Reference, Volume 1

v “Character Conversion Between Different Code Pages” on page 397

Related reference:

v “Supported territory codes and code pages” in the Administration Guide:
Planning

Code Page Conversion Expansion Factor

When your application successfully completes an attempt to connect to a DB2
database server, you should consider the following fields in the returned
SQLCA:
v The second token in the SQLERRMC field (tokens are separated by X'FF')

indicates the code page of the database. The ninth token in the SQLERRMC
field indicates the code page of the application. Querying the application’s
code page and comparing it to the database’s code page informs the
application whether it has established a connection that will undergo
character conversions.

v The first and second entries in the SQLERRD array. SQLERRD(1) contains
an integer value equal to the maximum expected expansion or contraction
factor for the length of mixed character data (CHAR data types) when
converted to the database code page from the application code page.
SQLERRD(2) contains an integer value equal to the maximum expected
expansion or contraction factor for the length of mixed character data
(CHAR data types) when converted to the application code page from the
database code page. A value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative value
indicates a possible contraction.

The considerations for graphic string data should not be a factor in unequal
code page situations. Each string always has the same number of characters,
regardless of whether the data is in the application or the database code page.

Related concepts:

v “Application Development in Unequal Code Page Situations” on page 408

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

400 Programming Client Applications

DBCS Character Sets

Each combined single-byte character set (SBCS) or double-byte character set
(DBCS) code page allows for both single- and double-byte character code
points. This is usually accomplished by reserving a subset of the 256 available
code points of a mixed code table for single-byte characters, with the
remainder of the code points either undefined, or allocated to the first byte of
double-byte code points. These code points are shown in the following table.

Table 30. Mixed Character Set Code Points

Country/Region Supported Mixed
Code Page

Code Points for
Single-Byte
Characters

Code Points for
First Byte of
Double-Byte

Characters

Japan 932, 943 X'00'-X'7F',
X'A1'-X'DF'

X'81'-X'9F',
X'E0'-X'FC'

Japan 942 X'00'-X'80',
X'A0'-X'DF',
X'FD'-X'FF'

X'81'-X'9F',
X'E0'-X'FC'

Taiwan 938 (*) X'00'-X'7E' X'81'-X'FC'

Taiwan 948 (*) X'00'-X'80', X'FD',
X'FE'

X'81'-X'FC'

Korea 949 X'00'-X'7F' X'8F'-X'FE'

Taiwan 950 X'00'-X'7E' X'81'-X'FE'

China 1381 X'00'-X'7F' X'8C'-X'FE'

Korea 1363 X'00'-X'7F' X'81'-X'FE'

China 1386 X'00' X'81'-X'FE'

Note: (*) This is an old code page that is no longer recommended.

Code points not assigned to either of these categories are not defined, and are
processed as single-byte undefined code points.

Within each implied DBCS code table, there are 256 code points available as
the second byte for each valid first byte. Second byte values can have any
value from X'40' to X'7E', and from X'80' to X'FE'. Note that in DBCS
environments, DB2 does not perform validity checking on individual
double-byte characters.

Chapter 15. National Language Support 401

Extended UNIX Code (EUC) Character Sets

Each EUC code page allows for both single-byte character code points, and up
to three different sets of multi-byte character code points. This support is
accomplished by reserving a subset of the 256 available code points of each
implied SBCS code page identifier for single-byte characters. The remainder of
the code points is undefined, allocated as an element of a multi-byte character,
or allocated as a single-shift introducer of a multi-byte character. These code
points are shown in the following tables.

Table 31. Japanese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 X'20'-X'7E' n/a n/a n/a

G1 X'A1'-X'FE' X'A1'-X'FE' n/a n/a

G2 X'8E' X'A1'-X'FE' n/a n/a

G3 X'8E' X'A1'-X'FE' X'A1'-X'FE' n/a

Table 32. Korean EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 X'20'-X'7E' n/a n/a n/a

G1 X'A1'-X'FE' X'A1'-X'FE' n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

Table 33. Traditional Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 X'20'-X'7E' n/a n/a n/a

G1 X'A1'-X'FE' X'A1'-X'FE' n/a n/a

G2 X'8E' X'A1'-X'FE' X'A1'-X'FE' X'A1'-X'FE'

G3 n/a n/a n/a n/a

Table 34. Simplified Chinese EUC Code Points

Group 1st Byte 2nd Byte 3rd Byte 4th Byte

G0 X'20'-X'7E' n/a n/a n/a

G1 X'A1'-X'FE' X'A1'-X'FE' n/a n/a

G2 n/a n/a n/a n/a

G3 n/a n/a n/a n/a

402 Programming Client Applications

Code points not assigned to any of these categories are not defined, and are
processed as single-byte undefined code points.

CLI, ODBC, JDBC, and SQLj Programs in a DBCS Environment

JDBC and SQLj programs access DB2® using the DB2 CLI/ODBC driver and
therefore use the same configuration file (db2cli.ini). The following entries
must be added to this configuration file if you run Java™ programs that access
DB2 Universal Database in a DBCS environment:

PATCH1 = 65536
Forces the driver to manually insert a ″G″ in front of character literals
that are in fact graphic literals. This PATCH1 value should always be
set when working in a double-byte environment.

PATCH1 = 64
Forces the driver to NULL terminate graphic output strings. This
PATCH1 value is needed by Microsoft® Access in a double-byte
environment. If you need to use this PATCH1 value as well, you
would add the two values together (64+65536 = 65600) and set
PATCH1=65600. See note 2 below for more information about
specifying multiple PATCH1 values.

PATCH2 = 7
Forces the driver to map all graphic column data types to char
column data type. This PATCH2 value is needed in a double-byte
environment.

PATCH2 = 10
Should only be used in an EUC (Extended Unix Code) environment.
This PATCH2 value ensures that the CLI driver provides data for
character variables (CHAR, VARCHAR, and so on) in the proper
format for the JDBC driver. The data in these character types will not
be usable in JDBC without this setting.

Notes:

1. Each of these keywords is set in each database specific stanza of the
db2cli.ini file. If you want to set them for multiple databases, repeat them
for each database stanza in db2cli.ini.

2. To set multiple PATCH1 values, add the individual values and use the
sum. To set PATCH1 to both 64 and 65536, set PATCH1=65600 (64+65536).
If you already have other PATCH1 values set, replace the existing number
with the sum of the existing number and the new PATCH1 values that
you want to add.

3. To set multiple PATCH2 values, specify them in a comma delimited string
(unlike the PATCH1 option). To set PATCH2 values 1 and 7, set
PATCH2=″1,7″

Chapter 15. National Language Support 403

Considerations for Japanese and Traditional Chinese EUC and UCS-2 Code Sets

The sections that follow describe the considerations for Japanese and
Traditional Chinese EUC and UCS-2 code sets,

Japanese and Traditional Chinese EUC and UCS-2 Code Set
Considerations

Extended UNIX® Code (EUC) denotes a set of general encoding rules that can
support from one to four character sets in UNIX-based operating
environments. The encoding rules are based on the ISO 2022 definition for
encoding 7-bit and 8-bit data in which control characters are used to separate
some of the character sets. A code set based on EUC conforms to the EUC
encoding rules, but also identifies the specific character sets associated with
the specific instances. For example, the IBM-eucJP code set for Japanese refers
to the encoding of the Japanese Industrial Standard characters according to
the EUC encoding rules.

Database and client application support for graphic (pure double-byte
character) data, while running under EUC code pages with character encoding
that is greater than two bytes in length is limited. The DB2 Universal
Database products implement strict rules for graphic data that require all
characters to be exactly two bytes wide. These rules do not allow many
characters from both the Japanese and Traditional Chinese EUC code pages.
To overcome this situation, support is provided at both the application level
and the database level to represent Japanese and Traditional Chinese EUC
graphic data using another encoding scheme.

A database created under either Japanese or Traditional Chinese EUC code
pages will actually store and manipulate graphic data using the Unicode
UCS-2 code set, a double-byte encoding scheme that is a proper subset of the
full Unicode character repertoire. Similarly, an application running under
those code pages will send graphic data to the database server as UCS-2
encoded data. With this support, applications running under EUC code pages
can access the same types of data as those running under DBCS code pages.
The IBM-defined code page identifier associated with UCS-2 is 1200, and the
CCSID number for the same code page is 13488. Graphic data in an eucJP or
eucTW database uses the CCSID number 13488. In a Unicode database, use
CCSID 1200 for GRAPHIC data.

DB2 Universal Database supports the all the Unicode characters that can be
encoded using UCS-2, but does not perform any composition, decomposition,
or normalization of characters. More information about the Unicode standard
can be found at the Unicode Consortium web site, www.unicode.org, and from
the latest edition of the Unicode Standard book published by Addison Wesley
Longman, Inc.

404 Programming Client Applications

If you are working with applications or databases using these character sets
you may need to consider dealing with UCS-2 encoded data. When
converting UCS-2 graphic data to the application’s EUC code page, there is
the possibility of an increase in the length of data. When large amounts of
data are being displayed, it may be necessary to allocate buffers, convert, and
display the data in a series of fragments.

The following sections discuss how to handle data in this environment. For
these sections, the term EUC is used to refer only to Japanese and Traditional
Chinese EUC character sets. Note that the discussions do not apply to DB2
Korean or Simplified-Chinese EUC support, because graphic data in these
character sets is represented using the EUC encoding.

Related concepts:

v “Code Page Conversion Expansion Factor” on page 400
v “Code Page Conversion String-Length Overflow in Mixed Code Set

Environments” on page 415

Related reference:

v “Supported territory codes and code pages” in the Administration Guide:
Planning

v “Extended UNIX Code (EUC) Character Sets” on page 402

Mixed EUC and Double-Byte Client and Database Considerations

The administration of database objects in mixed EUC and double-byte code
page environments is complicated by the possible expansion or contraction in
the length of object names as a result of conversions between the client and
database code page. In particular, many administrative commands and
utilities have documented limits to the lengths of character strings that they
can take as input or output parameters. These limits are typically enforced at
the client, unless documented otherwise. For example, the limit for a table
name is 128 bytes. It is possible that a character string that is 128 bytes under
a double-byte code page is larger, say 135 bytes, under an EUC code page.
This hypothetical 135-byte table name would be considered invalid by such
commands as REORGANIZE TABLE if used as an input parameter, despite
being valid in the target double-byte database. Similarly, the maximum
permitted length of output parameters may be exceeded, after conversion,
from the database code page to the application code page. This may cause
either a conversion error or output data truncation to occur.

If you expect to use administrative commands and utilities extensively in a
mixed EUC and double-byte environment, you should define database objects
and their associated data with the possibility of length expansion past the
supported limits. Administering an EUC database from a double-byte client

Chapter 15. National Language Support 405

imposes fewer restrictions than administering a double-byte database from an
EUC client. Double-byte character strings typically are equal or shorter than
the corresponding EUC character string. This characteristic will generally lead
to fewer problems caused by enforcing the character string length limits.

Note: In the case of SQL statements, validation of input parameters is not
conducted until the entire statement has been converted to the database
code page. Thus you can use character strings that may be technically
longer than allowed when represented in the client code page, but
which meet length requirements when represented in the database code
page.

Character Conversion Considerations for Traditional Chinese Users

Due to the standards definition for Traditional Chinese, there is a side effect
that you may encounter when you convert some characters between
double-byte or EUC code pages and UCS-2. There are 189 characters
(consisting of 187 radicals and 2 numbers) that share the same UCS-2 code
point, when converted, as another character in the code set. When these
characters are converted back to double-byte or EUC, they are converted to
the code point of the same character’s ideograph, with which it shares the
same UCS-2 code point, rather then back to the original code point. When
displayed, the character appears the same, but has a different code point.
Depending on your application’s design, you may have to take this behavior
into account.

As an example, consider what happens to code point A7A1 in EUC code page
964 when it is converted to UCS-2, then converted back to the original code
page, EUC 946:

EUC 946 UCS-2 EUC 946

A7A1

C4A1
UCS-2 C4A1

Thus, the original code points A7A1 and C4A1 end up as code point C4A1 after
conversion.

If you require the code page conversion tables for EUC code pages 946
(Traditional Chinese EUC) or 950 (Traditional Chinese Big-5) and UCS-2, see
the online Product and Service Technical Library.

Graphic Data in Japanese or Traditional Chinese EUC Applications

The information that follows describes EUC application development
considerations for graphic data, including graphic constants, graphic data in
UDFs, stored procedures, DBCLOB files, and collation:

406 Programming Client Applications

v Graphic constants
Graphic constants, or literals, are actually classified as mixed character data,
as they are part of an SQL statement. Any graphic constants in an SQL
statement from a Japanese or Traditional Chinese EUC client are implicitly
converted to the graphic encoding by the database server. You can use
graphic literals that are composed of EUC encoded characters in your SQL
applications. An EUC database server will convert these literals to the
graphic database code set, which will be UCS-2. Graphic constants from
EUC clients should never contain single-width characters, such as CS0 7-bit
ASCII characters or Japanese EUC CS2 (Katakana) characters.

v UDFs
UDFs are invoked at the database server, and are meant to deal with data
encoded in the same code set as the database. In the case of databases
running under the Japanese or Traditional Chinese code set, mixed
character data is encoded using the EUC code set under which the database
is created. Graphic data is encoded using UCS-2. UDFs need to recognize
and handle graphic data that is encoded with UCS-2.
For example, assume that you create a UDF called VARCHAR, and the
UDF converts a graphic string to a mixed character string. The VARCHAR
function has to convert a graphic string encoded as UCS-2 to an EUC
representation if the database is created under the EUC code set.

v Stored procedures
A stored procedure running under a Japanese or a Traditional Chinese EUC
code set must be able to recognize and handle graphic data that is encoded
using UCS-2. With these code sets, graphic data that is either received or
returned through the stored procedure’s input/output SQLDA is encoded
using UCS-2.

v DBCLOB files
The important considerations for DBCLOB files are:
– The DBCLOB file data is assumed to be in the EUC code page of the

application. For EUC DBCLOB files, data is converted to UCS-2 at the
client on read, and from UCS-2 at the client on write.

– The number of bytes read or written at the server is returned in the data
length field of the file reference variable. The number of bytes is based
on the number of UCS-2 encoded characters that are either read from or
written to the file. The number of bytes actually read from or written to
the file may be larger than the server writes in the data length field.

v Collation
Graphic data is sorted in binary sequence. Mixed data is sorted in the
collating sequence of the database applied on each byte. Because of the
possible difference in the ordering of characters in an EUC code set and a

Chapter 15. National Language Support 407

DBCS code set for the same country/region, different results may be
obtained when the same data is sorted in an EUC database and in a DBCS
database.

Related reference:

v “GRAPHIC scalar function” in the SQL Reference, Volume 1

v “SELECT statement” in the SQL Reference, Volume 2

v “Graphic strings” in the SQL Reference, Volume 1

Application Development in Unequal Code Page Situations

Depending on the character encoding schemes used by the application code
page and the database code page, there may or may not be a change in the
length of a string as it is converted from the source code page to the target
code page. A change in length is usually associated with conversions between
multi-byte code pages with different encoding schemes, for example DBCS
and EUC.

A possible increase in length is usually more serious than a possible decrease
in length, because an over-allocation of memory is less problematic than an
under-allocation. Application considerations for sending or retrieving data
depending on where the possible expansion may occur need to be dealt with
separately. It is also important to note the differences between a best-case and
worst-case situation when an expansion or contraction in length is indicated.
Positive values, indicating a possible expansion, will give the worst-case
multiplying factor. For example, a value of 2 for the SQLERRD(1) or
SQLERRD(2) field means that a maximum of twice the string length of storage
will be required to handle the data after conversion. This is a worst-case
indicator. In this example, best-case would be that after conversion the length
remains the same.

Negative values for SQLERRD(1) or SQLERRD(2), indicating a possible
contraction, also provide the worst-case expansion factor. For example, a value
of -1 means that the maximum storage required is equal to the string length
prior to conversion. It is indeed possible that less storage may be required,
but practically this is of little use unless the receiving application knows in
advance how the source data is structured.

To ensure that you always have sufficient storage allocated to cover the
maximum possible expansion after character conversion, you should allocate
storage equal to the value max_target_length obtained from the following
calculation:
1. Determine the expansion factor for the data.

For data transfer from the application to the database:

408 Programming Client Applications

expansion_factor = ABS[SQLERRD(1)]
if expansion_factor = 0

expansion_factor = 1

For data transfer from the database to the application:
expansion_factor = ABS[SQLERRD(2)]
if expansion_factor = 0

expansion_factor = 1

In the above calculations, ABS refers to the absolute value.

The check for expansion_factor = 0 is necessary because some DB2
Universal Database products return 0 in SQLERRD(1) and SQLERRD(2).
These servers do not support code page conversions that result in the
expansion or shrinkage of data; this is represented by an expansion factor
of 1.

2. Intermediate length calculation.
temp_target_length = actual_source_length * expansion_factor

3. Determine the maximum length for target data type.

Target data type Maximum length of type
(type_maximum_length)

CHAR 254

VARCHAR 32 672

LONG VARCHAR 32 700

CLOB 2 147 483 647
4. Determine the maximum target length.

�1� if temp_target_length < actual_source_length
max_target_length = type_maximum_length

else
�2� if temp_target_length > type_maximum_length

max_target_length = type_maximum_length
else

�3� max_target_length = temp_target_length

All the above checks are required to allow for overflow, which may occur
during the length calculation. The specific checks are:

�1� Numeric overflow occurs during the calculation of
temp_target_length in step 2.

If the result of multiplying two positive values together is greater
than the maximum value for the data type, the result wraps around
and is returned as a value less than the larger of the two values.

Chapter 15. National Language Support 409

For example, the maximum value of a 2-byte signed integer
(which is used for the length of non-CLOB data types) is 32 767. If
the actual_source_length is 25 000 and the expansion factor is 2,
temp_target_length is theoretically 50 000. This value is too large
for the 2-byte signed integer so it gets wrapped around and is
returned as -15 536.

For the CLOB data type, a 4-byte signed integer is used for the
length. The maximum value of a 4-byte signed integer is
2 147 483 647.

�2� temp_target_length is too large for the data type.

The length of a data type cannot exceed the values listed in step 3.

If the conversion requires more space than is available in the data
type, it may be possible to use a larger data type to hold the
result. For example, if a CHAR(250) value requires 500 bytes to
hold the converted string, it will not fit into a CHAR value
because the maximum length is 254 bytes. However, it may be
possible to use a VARCHAR(500) to hold the result after
conversion. See the topic on code page conversion string-length
overflow in mixed code set environments for more information
about what happens when converted data exceeds the limit for a
data type.

�3� temp_target_length is the correct length for the result.

Using the SQLERRD(1) and SQLERRD(2) values returned when connecting to
the database and the above calculations, you can determine whether the
length of a string will possibly increase or decrease as a result of character
conversion. In general, a value of 0 or 1 indicates no expansion; a value
greater than 1 indicates a possible expansion in length; a negative value
indicates a possible contraction. (Note that values of ‘0’ will only come from
down-level DB2 Universal Database products. Also, these values are
undefined for other database server products. The following table lists values
to expect for various application code page and database code page
combinations when using DB2 Universal Database.

Table 35. SQLCA.SQLERRD Settings on CONNECT

Application Code
Page

Database Code
Page

SQLERRD(1) SQLERRD(2)

SBCS SBCS +1 +1

DBCS DBCS +1 +1

eucJP eucJP +1 +1

eucJP DBCS -1 +2

DBCS eucJP +2 -1

410 Programming Client Applications

Table 35. SQLCA.SQLERRD Settings on CONNECT (continued)

Application Code
Page

Database Code
Page

SQLERRD(1) SQLERRD(2)

eucTW eucTW +1 +1

eucTW DBCS -1 +2

DBCS eucTW +2 -1

eucKR eucKR +1 +1

eucKR DBCS +1 +1

DBCS eucKR +1 +1

eucCN eucCN +1 +1

eucCN DBCS +1 +1

DBCS eucCN +1 +1

If the SQLERRD(1) or SQLERRD(2) values indicate an expansion at either the
database server or the application client, you should consider the following:
v Expansion at the database server

If the SQLERRD(1) entry indicates an expansion at the database server,
your application must consider the possibility that length-dependent
character data that is valid at the client will not be valid at the database
server after it is converted. For example, DB2 products require that column
names be no more than 128 bytes in length. It is possible that a character
string that is 128 bytes in length encoded under a DBCS code page expands
past the 128-byte limit when it is converted to an EUC code page. This
possibility means that there may be activities that are valid when the
application code page and the database code page are equal, and invalid
when they are different. Exercise caution when you design EUC and DBCS
databases for unequal code page situations.

v Expansion at the application
If the SQLERRD(2) entry indicates an expansion at the client application,
your application must consider the possibility that length-dependent
character data will expand in length after being converted. For example, a
row with a CHAR(128) column is retrieved. When the database and
application code pages are equal, the length of the data returned is 128
bytes. However, in an unequal code page situation, 128 bytes of data
encoded under a DBCS code page may expand past 128 bytes when
converted to an EUC code page. Thus, additional storage may have to
allocated to retrieve the complete string.

Related concepts:

v “Code Page Conversion String-Length Overflow in Mixed Code Set
Environments” on page 415

Chapter 15. National Language Support 411

Client-Based Parameter Validation in a Mixed Code Set Environment

An important side effect of potential character data expansion or contraction
between the client and server involves the validation of data passed between
the client application and the database server. In an unequal code page
situation, it is possible that data determined to be valid at the client is actually
invalid at the database server after code page conversion. Conversely, data
that is invalid at the client may be valid at the database server after
conversion.

Any end-user application or API library has the potential of not being able to
handle all possibilities in an unequal code page situation. In addition, while
some parameter validation, such as string length, is performed at the client for
commands and APIs, the tokens within SQL statements are not verified until
they have been converted to the database’s code page. This verification can
lead to situations where it is possible to use an SQL statement in an unequal
code page environment to access a database object, such as a table, but it will
not be possible to access the same object using a particular command or API.

Consider an application that returns data contained in a table provided by an
end-user, and checks that the table name is not greater than 128 bytes long.
Now consider the following scenarios for this application:
1. A DBCS database is created. From a DBCS client, a table (t1) is created

with a table name which is 128 bytes long. The table name includes
several characters which would be greater than two bytes in length if the
string is converted to EUC, resulting in the EUC representation of the table
name being a total of 131 bytes in length. Because there is no expansion
for DBCS to DBCS connections, the table name is 128 bytes in the database
environment, and the CREATE TABLE is successful.

2. An EUC client connects to the DBCS database. It creates a table (t2) with a
table name that is 120 bytes long when encoded as EUC, and 100 bytes
long when converted to DBCS. The table name in the DBCS database is
100 bytes. The CREATE TABLE is successful.

3. The EUC client creates a table (t3) with a table name that is 64 EUC
characters in length (131 bytes). When this name is converted to DBCS, its
length shrinks to the 128-byte limit. The CREATE TABLE is successful.

4. The EUC client invokes the application against the each of the tables (t1,
t2, and t3) in the DBCS database, which results in:

Table Result

t1 The application considers the table name invalid because it
is 131 bytes long.

t2 Displays correct results

412 Programming Client Applications

t3 The application considers the table name invalid because it
is 131 bytes long.

5. The EUC client is used to query the DBCS database from the CLP.
Although the table name is 131 bytes long on the client, the queries are
successful because the table name is 128 bytes long at the server.

DESCRIBE Statement in Mixed Code Set Environments

A DESCRIBE performed against an EUC database will return information
about mixed character and GRAPHIC columns based on the definition of
these columns in the database. This information is based on code page of the
server before it is converted to the client’s code page.

When you perform a DESCRIBE against a select list item that is resolved in
the application context (for example VALUES SUBSTR(?,1,2)) then, for any
character or graphic data involved, you should evaluate the returned SQLLEN
value along with the returned code page. If the returned code page is the
same as the application code page, there is no expansion. If the returned code
page is the same as the database code page, expansion is possible. Select list
items that are FOR BIT DATA (code page 0) or in the application code page
are not converted when returned to the application, therefore there is no
expansion or contraction of the reported length.

Considerations are different for an EUC application accessing a DBCS
database as compared to a DBCS application accessing an EUC database:
v EUC application accessing a DBCS database

If your application’s code page is an EUC code page, and it issues a
DESCRIBE against a database with a DBCS code page, the information
returned for CHAR and GRAPHIC columns is returned in the database
context. For example, a CHAR(5) column returned as part of a DESCRIBE
has a value of five for the SQLLEN field. In the case of non-EUC data, you
allocate five bytes of storage when you fetch the data from this column.
With EUC data, this may not be the case. When the code page conversion
from DBCS to EUC takes place, there may be an increase in the length of
the data due to the different encoding used for characters for CHAR
columns. For example, with the Traditional Chinese character set, the
maximum increase is double. That is, the maximum character length in the
DBCS encoding is two bytes, which may increase to a maximum character
length of four bytes in EUC. For the Japanese code set, the maximum
increase is also double. Note, however, that while the maximum character
length in Japanese DBCS is two bytes, it may increase to a maximum
character length in Japanese EUC of three bytes. Although this increase
appears to be only by a factor of 1.5, the single-byte Katakana characters in
Japanese DBCS are only one byte in length, while they are two bytes in
length in Japanese EUC.

Chapter 15. National Language Support 413

Possible changes in data length as a result of character conversions apply
only to mixed character data. Graphic character data encoding is always the
same length, two bytes, regardless of the encoding scheme. To avoid losing
the data, you need to evaluate whether an unequal code page situation
exists, and whether or not it is between an EUC application and a DBCS
database. You can determine the database code page and the application
code page from tokens in the SQLCA returned from a CONNECT
statement. If such a situation exists, your application needs to allocate
additional storage for mixed character data based on the maximum
expansion factor for that encoding scheme.

v DBCS application accessing an EUC database
If your application code page is a DBCS code page and issues a DESCRIBE
against an EUC database, the situation is similar to that in in which an EUC
application accesses a DBCS database. However, in this situation your
application may require less storage than is indicated by the value of the
SQLLEN field. The worst case in this situation is that all of the data is
single-byte or double-byte under EUC, meaning that exactly SQLLEN bytes
are required under the DBCS encoding scheme. In any other situation, less
than SQLLEN bytes are required because a maximum of two bytes is
required to store any EUC character.

Related concepts:

v “Derivation of Code Page Values” on page 391
v “Code Page Conversion Expansion Factor” on page 400
v “Code Page Conversion String-Length Overflow in Mixed Code Set

Environments” on page 415

Related reference:

v “DESCRIBE statement” in the SQL Reference, Volume 2

Fixed-Length and Variable-Length Data in Mixed Code Set Environments

Due to the possible change in length of strings when conversions occur
between DBCS and EUC code pages, you should consider not using
fixed-length data types. Depending on whether you require blank padding,
you should consider changing the SQLTYPE from a fixed-length character
string to a variable-length character string after performing the DESCRIBE.
For example, if an EUC to DBCS connection is informed of a maximum
expansion factor of two for a CHAR(5) column, the application should
allocate ten bytes.

If the SQLTYPE is fixed-length, the EUC application will receive the column
as an EUC data stream converted from the DBCS data (which itself may have
up to five bytes of trailing blank pads) with further blank padding if the code
page conversion does not cause the data element to grow to its maximum

414 Programming Client Applications

size. If the SQLTYPE is variable-length, the original meaning of the content of
the CHAR(5) column is preserved, however, the source five bytes may have a
target of between five and ten bytes. Similarly, in the case of possible data
shrinkage (DBCS application and EUC database), you should consider
working with variable-length data types.

An alternative to either allocating extra space or promoting the data type is to
select the data in fragments. For example, to select the same VARCHAR(3000),
which may be up to 6 000 bytes in length after the conversion, you could
perform two selects, SUBSTR(VC3000, 1, LENGTH(VC3000)/2) and
SUBSTR(VC3000, (LENGTH(VC3000)/2)+1), separately into 2 VARCHAR(3000)
application areas. This method is the only possible solution when the data
type is no longer promotable. For example, a CLOB encoded in the Japanese
DBCS code page with the maximum length of 2 gigabytes is possibly up to
twice that size when encoded in the Japanese EUC code page. This means that
the data will have to be broken up into fragments, because there is no support
for a data type in excess of 2 gigabytes in length.

Code Page Conversion String-Length Overflow in Mixed Code Set
Environments

In EUC and DBCS unequal code page environments, situations may occur
after conversion takes place, when there is not enough space allocated in a
column to accommodate the entire string. In this case, the maximum
expansion will be twice the length of the string in bytes. In cases where
expansion does exceed the capacity of the column, SQLCODE -334
(SQLSTATE 22524) is returned.

This leads to situations that may not be immediately obvious or previously
considered as follows:
v An SQL statement may be no longer than 32 765 bytes in length. If the

statement is complex enough or uses enough constants or database object
names that may be subject to expansion upon conversion, this limit may be
reached earlier than expected.

v SQL identifiers are allowed to expand on conversion up to their maximum
length, which is eight bytes for short identifiers and 128 bytes for long
identifiers.

v Host language identifiers are allowed to expand on conversion up to their
maximum length, which is 255 bytes.

v When the character fields in the SQLCA structure are converted, they are
allowed to expand to no more than their maximum defined length.

When you design applications for mixed code set environments, you should
refer to the appropriate documentation if you have any of the following
situations:

Chapter 15. National Language Support 415

v Corresponding string columns in full selects with set operations (UNION,
INTERSECT and EXCEPT)

v Operands of concatenation
v Operands of predicates (with the exception of LIKE)
v Result expressions of a CASE statement
v Arguments of the scalar function COALESCE (and VALUE)
v Expression values of the IN list of an IN predicate
v Corresponding expressions of a multiple row VALUES clause

In these situations, conversions may occur according to the application code
page instead of the database code page.

Other situations that you need to consider are those in which the character
conversion results in a string length beyond the limit for the data type, and
code page conversions in stored procedures:
v Character conversion past a data type limit

In EUC and DBCS unequal code page environments, situations may occur
after conversion takes place in which the length of the mixed character or
graphic string exceeds the maximum length allowed for that data type. If
the length of the string, after expansion, exceeds the limit of the data type,
type promotion does not occur. Instead, an error message is returned
indicating that the maximum allowed expansion length has been exceeded.
This situation is more likely to occur while evaluating predicates than
inserts. With inserts, the column width is more readily known by the
application, and the maximum expansion factor can be readily taken into
account. In many cases, this side effect of character conversion can be
avoided by casting the value to an associated data type with a longer
maximum length. For example, the maximum length of a CHAR value is
254 bytes, while the maximum length of a VARCHAR is 32 672 bytes. In
cases where expansion does exceed the maximum length of the data type,
SQLCODE -334 (SQLSTATE 22524) is returned.

v Code page conversion in a stored procedure
Mixed character or graphic data specified in host variables and SQLDAs in
sqleproc() or SQL CALL invocations are converted in situations where the
application and database code pages are different. In cases where string
length expansion occurs as a result of conversion, you receive an SQLCODE
-334 (SQLSTATE 22524) if there is not enough space allocated to handle the
expansion. Thus you must be sure to provide enough space for potentially
expanding strings when developing stored procedures. You should use
variable-length data types with enough space allocated to allow for
expansion.

Related reference:

v “COALESCE scalar function” in the SQL Reference, Volume 1

416 Programming Client Applications

v “VALUE scalar function” in the SQL Reference, Volume 1

v “Fullselect” in the SQL Reference, Volume 1

v “VALUES statement” in the SQL Reference, Volume 2

v “CASE statement” in the SQL Reference, Volume 2

v “Predicates” in the SQL Reference, Volume 1

Applications Connected to Unicode Databases

Applications from any code page environment can connect to a Unicode
database. For applications that connect to a Unicode database, the database
manager converts character string data between the application code page and
the database code page (UTF-8). For a Unicode database, GRAPHIC data is in
UCS-2 big-endian order. However, when you use the command line processor
to retrieve graphic data, the graphic characters are also converted to the client
code page. This conversion allows the command line processor to display
graphic characters in the current font. Data loss may occur whenever the
database manager converts UCS-2 characters to a client code page. Characters
that the database manager cannot convert to a valid character in the client
code page are replaced with the default substitution character in that code
page.

Note: The information that applies to applications in mixed code sets also
applies to applications that connect to Unicode databases.

When DB2 converts characters from a code page to UTF-8, the total number
of bytes that represent the characters may expand or shrink, depending on the
code page and the code points of the characters. 7-bit ASCII remains invariant
in UTF-8, and each ASCII character requires one byte. Non-ASCII characters
become more than one byte each. For more information about UTF-8
conversions, refer to the Unicode standard documents.

For applications that connect to a Unicode database, GRAPHIC data is already
in Unicode. For applications that connect to DBCS databases, GRAPHIC data
is converted between the application DBCS code page and the database DBCS
code page. Unicode applications should perform the necessary conversions to
and from Unicode themselves, or should set the WCHARTYPE CONVERT
option and use wchar_t for graphic data.

Related concepts:

v “Unicode handling of data types” in the Administration Guide: Planning

v “String comparisons in a Unicode database” in the Administration Guide:
Planning

v “Graphic Host Variables in C and C++” on page 176

Chapter 15. National Language Support 417

v “Package Name Considerations in Mixed Code Page Environments” on
page 396

v “Mixed EUC and Double-Byte Client and Database Considerations” on
page 405

v “Client-Based Parameter Validation in a Mixed Code Set Environment” on
page 412

v “DESCRIBE Statement in Mixed Code Set Environments” on page 413
v “Fixed-Length and Variable-Length Data in Mixed Code Set Environments”

on page 414
v “Code Page Conversion String-Length Overflow in Mixed Code Set

Environments” on page 415

418 Programming Client Applications

Chapter 16. Managing Transactions

Remote Unit of Work 419
Multisite Update Considerations 419

Multisite Update 419
When to Use Multisite Update 420
SQL Statements in Multisite Update
Applications 421
Precompilation of Multisite Update
Applications 423
Configuration Parameter Considerations
for Multisite Update Applications . . . 424

Accessing Host, AS/400, or iSeries Servers 426

Concurrent Transactions 426
Concurrent Transactions 426
Potential Problems with Concurrent
Transactions 427
Deadlock Prevention for Concurrent
Transactions 428

X/Open XA Interface Programming
Considerations 429
Application Linkage and the X/Open XA
Interface 433

Remote Unit of Work

A unit of work is a single logical transaction. It consists of a sequence of SQL
statements in which either all of the operations are successfully performed, or
the sequence as a whole is considered unsuccessful.

A remote unit of work lets a user or application program read or update data
at one location per unit of work. It supports access to one database within a
unit of work. While an application program can access several remote
databases, it can only access one database within a unit of work.

A remote unit of work has the following characteristics:
v Multiple requests per unit of work are supported.
v Multiple cursors per unit of work are supported.
v Each unit of work can access only one database.
v The application program either commits or rolls back the unit of work. In

certain error conditions, the server may roll back the unit of work.

Multisite Update Considerations

The sections that follow describe multisite updates, and how to develop
applications that perform multisite updates.

Multisite Update

Multisite update, also known as distributed unit of work (DUOW) and two-phase
commit, is a function that enables your applications to update data in multiple
remote database servers with guaranteed integrity. A good example of a
multisite update is a banking transaction that involves the transfer of money
from one account to another in a different database server. In such a

© Copyright IBM Corp. 1993-2002 419

transaction it is critical that updates that implement debit operation on one
account do not get committed unless the updates required to process credit to
the other account are committed as well. The multisite update considerations
apply when data representing these accounts is managed by two different
database servers.

You can use multisite update to read and update multiple DB2 Universal
Database databases within a unit of work. If you have installed DB2® Connect
or use the DB2 Connect™ capability provided with DB2 Universal Database™

Enterprise Edition, you can also use multisite update with host, AS/400, or
iSeries database servers such as DB2 Universal Database for OS/390 and
z/OS and DB2 UDB for AS/400. Certain restrictions apply when you use DB2
Connect in a multisite update with other database servers.

A transaction manager coordinates the commit among multiple databases. If
you use a transaction processing (TP) monitor environment such as TxSeries
CICS, the TP monitor uses its own transaction manager. Otherwise, the
transaction manager supplied with DB2 is used. DB2 Universal Database for
UNIX, and Windows® 32-bit operating systems is an XA (extended
architecture) compliant resource manager. Host and iSeries database servers
that you access with DB2 Connect are XA compliant resource managers. Also
note that the DB2 Universal Database transaction manager isnot an XA
compliant transaction manager, meaning the transaction manager can only
coordinate DB2 databases.

Related concepts:

v “X/Open distributed transaction processing model” in the Administration
Guide: Planning

v “Multisite Updates” in the DB2 Connect User’s Guide

When to Use Multisite Update

Multisite update is most useful when you want to work with two or more
databases and maintain data integrity. For example, if each branch of a bank
has its own database, a money transfer application could do the following:
1. Connect to the sender’s database.
2. Read the sender’s account balance and verify that enough money is

present.
3. Reduce the sender’s account balance by the transfer amount.
4. Connect to the recipient’s database
5. Increase the recipient’s account balance by the transfer amount.
6. Commit the databases.

By doing the transfer of funds within one unit of work, you ensure that either
both databases are updated or neither database is updated.

420 Programming Client Applications

SQL Statements in Multisite Update Applications

The following table shows how you code SQL statements for multisite update.
The left column shows SQL statements that do not use multisite update; the
right column shows similar statements with multisite update.

Table 36. RUOW and Multisite Update SQL Statements

RUOW Statements Multisite Update Statements

CONNECT TO D1
SELECT
UPDATE
COMMIT

CONNECT TO D2
INSERT
COMMIT

CONNECT TO D1
SELECT
COMMIT

CONNECT RESET

CONNECT TO D1
SELECT
UPDATE

CONNECT TO D2
INSERT
RELEASE CURRENT

SET CONNECTION D1
SELECT
RELEASE D1
COMMIT

The SQL statements in the left column access only one database for each unit
of work. This is a remote unit of work (RUOW) application.

The SQL statements in the right column access more than one database within
a unit of work. This is a multisite update application.

Some SQL statements are coded and interpreted differently in a multisite
update application:
v The current unit of work does not need to be committed or rolled back

before you connect to another database.
v When you connect to another database, the current connection is not

disconnected. Instead, it is put into a dormant state. If the CONNECT
statement fails, the current connection is not affected.

v You cannot connect with the USER/USING clause if a current or dormant
connection to the database already exists.

v You can use the SET CONNECTION statement to change a dormant
connection to the current connection.
You can also accomplish the same thing by issuing a CONNECT statement
to the dormant database. This method is not allowed if you set SQLRULES
to STD. You can set the value of SQLRULES using a precompiler option or
the SET CLIENT command or API. The default value of SQLRULES (DB2)
allows you to switch connections using the CONNECT statement.

Chapter 16. Managing Transactions 421

v In a select, the cursor position is not affected if you switch to another
database, then back to the original database.

v The CONNECT RESET statement does not disconnect the current
connection and does not implicitly commit the current unit of work.
Instead, this statement is equivalent to explicitly connecting to the default
database (if one has been defined). If an implicit connection is not defined,
SQLCODE -1024 (SQLSTATE 08003) is returned.

v You can use the RELEASE statement to mark a connection for disconnection
at the next COMMIT. The RELEASE CURRENT statement applies to the
current connection, the RELEASE connection applies to the named
connection, and the RELEASE ALL statement applies to all connections.
A connection that is marked for release can still be used until it is dropped
at the next COMMIT statement. A rollback does not drop the connection;
this behavior allows a retry with the connections still in place. Use the
DISCONNECT statement (or precompiler option) to drop connections after
a commit or rollback.

v The COMMIT statement commits all databases in the unit of work (current
or dormant).

v The ROLLBACK statement rolls back all databases in the unit of work, and
closes held cursors for all databases whether or not they are accessed in the
unit of work.

v All connections (including dormant connections and connections marked
for release) are disconnected when the application process terminates.

v Upon any successful connection (including a CONNECT statement with no
options, which only queries the current connection) a number will be
returned in the SQLERRD(3) and SQLERRD(4) fields of the SQLCA.
The SQLERRD(3) field returns information on whether the database
connected is currently updatable in a unit of work. Its possible values are:
1 Updatable.
2 Read-only.

The SQLERRD(4) field returns the following information on the current
characteristics of the connection:

0 Not applicable. This state is only possible if running from a
down-level client that uses one-phase commit and is an updater.

1 One-phase commit.

2 One-phase commit (read-only). This state is only applicable to host,
AS/400, or iSeries database servers that you access with DB2®

Connect without starting the DB2 Connect™ sync point manager.

3 Two-phase commit.

422 Programming Client Applications

If you are writing tools or utilities, you may want to issue a message to
your users if the connection is read-only.

Precompilation of Multisite Update Applications

When you precompile a multisite update application, you should set the CLP
connection to a type 1 connection; otherwise, you will receive an SQLCODE
30090 (SQLSTATE 25000) when you attempt to precompile your application.
The following precompiler options are used when you precompile an
application that uses multisite updates:

CONNECT (1 | 2)
Specify CONNECT 2 to indicate that this application uses the SQL
syntax for multisite update applications. The default, CONNECT 1,
means that the normal (RUOW) rules for SQL syntax apply to the
application.

SYNCPOINT (ONEPHASE | TWOPHASE | NONE)
If you specify SYNCPOINT TWOPHASE and DB2® coordinates the
transaction, DB2 requires a database to maintain the transaction state
information. When you deploy your application, you must define this
database by configuring the database manager configuration
parameter tm_database.

SQLRULES (DB2 | STD)
Specifies whether DB2 rules or standard (STD) rules based on
ISO/ANSI SQL92 should be used in multisite update applications.
DB2 rules allow you to issue a CONNECT statement to a dormant
database; STD rules do not allow this.

DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC)
Specifies which database connections are disconnected at COMMIT:
only databases that are marked for release with a RELEASE statement
(EXPLICIT), all databases that have no open WITH HOLD cursors
(CONDITIONAL), or all connections (AUTOMATIC).

Multisite update precompiler options become effective when the first database
connection is made. You can use the SET CLIENT API to supersede
connection settings when there are no existing connections (before any
connection is established or after all connections are disconnected). You can
use the QUERY CLIENT API to query the current connection settings of the
application process.

The binder fails if an object referenced in your application program does not
exist. There are three possible ways to deal with multisite update applications:
v You can split the application into several files, each of which accesses only

one database. You then prep and bind each file against the one database
that it accesses.

Chapter 16. Managing Transactions 423

v You can ensure that each table exists in each database. For example, the
branches of a bank might have databases whose tables are identical (except
for the data).

v You can use only dynamic SQL.

Related concepts:

v “SQL Statements in Multisite Update Applications” on page 421

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

v “sqlesetc - Set Client” in the Administrative API Reference

v “sqleqryi - Query Client Information” in the Administrative API Reference

v “PRECOMPILE” in the Command Reference

Configuration Parameter Considerations for Multisite Update Applications

The following configuration parameters affect applications which perform
multisite updates. With the exception of locktimeout, the configuration
parameters are database manager configuration parameters. locktimeout is a
database configuration parameter.

tm_database
Specifies which database will act as a transaction manager for
two-phase commit transactions.

resync_interval
Specifies the number of seconds that the system waits between
attempts to try to resynchronize an indoubt transaction. (An indoubt
transaction is a transaction that successfully completes the first phase
of a two-phase commit but fails during the second phase.)

locktimeout
Specifies the number of seconds before a lock wait will time-out and
roll back the current transaction for a given database. The application
must issue an explicit ROLLBACK to roll back all databases that
participate in the multisite update. locktimeout is a database
configuration parameter.

tp_mon_name
Specifies the name of the TP monitor, if any.

spm_resync_agent_limit
Specifies the number of simultaneous agents that can perform resync
operations with the host, AS/400, or iSeries server using SNA.

spm_name

424 Programming Client Applications

v If the sync point manager is being used with a TCP/IP two-phase
commit connection, the spm_name must be an unique identifier
within the network. When you create a DB2® instance, DB2 derives
the default value of spm_name from the TCP/IP hostname. You may
modify this value if it is not acceptable in your environment. For
TCP/IP connectivity with host database servers, the default value
should be acceptable. For SNA connections to host, AS/400, or
iSeries database servers, this value must match an SNA LU profile
defined within your SNA product.

v If the sync point manager is being used with an SNA two-phase
commit connection, the sync point manager name must be set to
the LU_NAME that is used for two-phase commit.

v If the sync point manager is being used for both TCP/IP and SNA,
the LU_NAME that is used for two-phase commit must be used.

Note: Multisite updates in an environment with host, AS/400, or
iSeries database servers may require the sync point manager.

spm_log_size
The number of 4 kilobyte pages of each primary and secondary log
file used by the sync point manager to record information on
connections, status of current connections, and so on.

Additional considerations exist if your application performs multisite updates
that are coordinated by an XA transaction manager with connections to a host,
AS/400, or iSeries database.

Related concepts:

v “Multisite Updates” in the DB2 Connect User’s Guide

v “Multisite update and sync point manager” in the DB2 Connect User’s Guide

Related tasks:

v “Enabling Multisite Updates using the Control Center” in the DB2 Connect
User’s Guide

Related reference:

v “Sync Point Manager Log File Path configuration parameter -
spm_log_path” in the Administration Guide: Performance

v “Transaction Resync Interval configuration parameter - resync_interval” in
the Administration Guide: Performance

v “Transaction Manager Database Name configuration parameter -
tm_database” in the Administration Guide: Performance

v “Transaction Processor Monitor Name configuration parameter -
tp_mon_name” in the Administration Guide: Performance

Chapter 16. Managing Transactions 425

v “Lock Timeout configuration parameter - locktimeout” in the Administration
Guide: Performance

v “Sync Point Manager Name configuration parameter - spm_name” in the
Administration Guide: Performance

v “Sync Point Manager Log File Size configuration parameter -
spm_log_file_sz” in the Administration Guide: Performance

v “Sync Point Manager Resync Agent Limit configuration parameter -
spm_max_resync” in the Administration Guide: Performance

Accessing Host, AS/400, or iSeries Servers

Procedure:

If you want to develop applications that can access (or update) different
database systems, you should:
1. Use SQL statements and precompile/bind options that are supported on

all of the database systems that your applications will access. For example,
stored procedures are not supported on all platforms.
For IBM products, see the SQL documentation before you start coding.

2. Where possible, have your applications check the SQLSTATE rather than
the SQLCODE.
If your applications will use DB2 Connect and you want to use
SQLCODEs, consider using the mapping facility provided by DB2 Connect
to map SQLCODE conversions between unlike databases.

3. Test your application with the host, AS/400, or iSeries databases (such as
DB2 Universal Database for OS/390 and z/OS, OS/400, or DB2 for VSE &
VM) that you intend to support.

Related concepts:

v “Applications in Host or iSeries Environments” on page 481

Concurrent Transactions

The sections that follow describe concurrent transactions, and how to avoid
problems with them.

Concurrent Transactions

Sometimes it is useful for an application to have multiple independent
connections called concurrent transactions. Using concurrent transactions, an
application can connect to several databases at the same time, and can
establish several distinct connections to the same database.

426 Programming Client Applications

The context APIs that are used for multiple-thread database access allow an
application to use concurrent transactions. Each context created in an
application is independent from the other contexts. This means you create a
context, connect to a database using the context, and run SQL statements
against the database without being affected by the activities such as running
COMMIT or ROLLBACK statements of other contexts.

For example, suppose you are creating an application that allows a user to
run SQL statements against one database, and keeps a log of the activities
performed in a second database. Because the log must be kept up to date, it is
necessary to issue a COMMIT statement after each update of the log, but you
do not want the user’s SQL statements affected by commits for the log. This is
a perfect situation for concurrent transactions. In your application, create two
contexts: one connects to the user’s database and is used for all the user’s
SQL; the other connects to the log database and is used for updating the log.
With this design, when you commit a change to the log database, you do not
affect the user’s current unit of work.

Another benefit of concurrent transactions is that if the work on the cursors in
one connection is rolled back, it has no affect on the cursors in other
connections. After the rollback in the one connection, both the work done and
the cursor positions are still maintained in the other connections.

Related concepts:

v “Purpose of Multiple-Thread Database Access” on page 207

Potential Problems with Concurrent Transactions

An application that uses concurrent transactions can encounter some problems
that cannot arise when writing an application that uses a single connection.
When writing an application with concurrent transactions, exercise caution
with the following:
v Database dependencies between two or more contexts.

Each context in an application has its own set of database resources,
including locks on database objects. These different sets of resources make
it possible for two contexts, if they are accessing the same database object,
to become deadlocked. The database manager will detect the deadlock, one
of the contexts will receive an SQLCODE -911, and its unit of work will be
rolled back.

v Application dependencies between two or more contexts.
Switching contexts within a single thread creates dependencies between the
contexts. If the contexts also have database dependencies, it is possible for a
deadlock to develop. Because some of the dependencies are outside of the
database manager, the deadlock will not be detected and the application
will be suspended.

Chapter 16. Managing Transactions 427

As an example of this sort of problem, consider the following application:
context 1
UPDATE TAB1 SET COL = :new_val

context 2
SELECT * FROM TAB1
COMMIT

context 1
COMMIT

Suppose the first context successfully executes the UPDATE statement. The
update establishes locks on all the rows of TAB1. Now context 2 tries to
select all the rows from TAB1. Because the two contexts are independent,
context 2 waits on the locks held by context 1. Context 1, however, cannot
release its locks until context 2 finishes executing. The application is now
deadlocked, but the database manager does not know that context 1 is
waiting on context 2, so it will not force one of the contexts to be rolled
back. The unresolved dependency leaves the application suspended.

Related concepts:

v “Deadlock Prevention for Concurrent Transactions” on page 428

Deadlock Prevention for Concurrent Transactions

Because the database manager cannot detect deadlocks between contexts, you
must design and code your application in a way that will prevent (or at least
avoid) deadlocks. Consider the following example, which can result in a
deadlock situation:

context 1
UPDATE TAB1 SET COL = :new_val

context 2
SELECT * FROM TAB1
COMMIT

context 1
COMMIT

Suppose the first context successfully executes the UPDATE statement. The
update establishes locks on all the rows of TAB1. Now context 2 tries to select
all the rows from TAB1. Because the two contexts are independent, context 2
waits on the locks held by context 1. Context 1, however, cannot release its
locks until context 2 finishes executing. The application is now deadlocked,
but the database manager does not know that context 1 is waiting on context
2, so it will not force one of the contexts to be rolled back. The unresolved
dependency leaves the application suspended.

428 Programming Client Applications

You can avoid the deadlock in the example in several ways:
v Release all locks held before switching contexts.

Change the code so that context 1 performs its commit before switching to
context 2.

v Do not access a given object from more than one context at a time.
Change the code so that both the update and the select are done from the
same context.

v Set the locktimeout database configuration parameter to a value other than
-1.
While a value other than -1 will not prevent the deadlock, it will allow
execution to resume. Context 2 is eventually rolled back because it is unable
to obtain the requested lock. When context 2 is rolled back, context 1 can
continue executing (which releases the locks) and context 2 can retry its
work.

Althought the techniques for avoiding deadlocks are described in terms of the
example, you can apply them to all applications that use concurrent
transactions.

Related concepts:

v “Potential Problems with Concurrent Transactions” on page 427

Related reference:

v “Lock Timeout configuration parameter - locktimeout” in the Administration
Guide: Performance

X/Open XA Interface Programming Considerations

The X/Open XA Interface is an open standard for coordinating changes to
multiple resources, while ensuring the integrity of these changes. Software
products known as transaction processing monitors typically use the XA
interface, and because DB2 supports this interface, one or more DB2 databases
may be concurrently accessed as resources in such an environment.

Special consideration is required by DB2 when operating in a distributed
transaction processing (DTP) environment that uses the XA interface, because
a different model is used for transaction processing as compared to
applications running independently of a TP monitor. The characteristics of this
transaction processing model are:
v Multiple types of recoverable resources (such as DB2 databases) can be

modified within a transaction.
v Resources are updated using two-phase commit to ensure the integrity of

the transactions being executed.

Chapter 16. Managing Transactions 429

v Application programs send requests to commit or roll back a transaction to
the TP monitor product rather than to the managers of the resources. For
example, in a CICS® environment an application would issue EXEC CICS
SYNCPOINT to commit a transaction, and issuing EXEC SQL COMMIT to DB2
would be invalid and unnecessary.

v Authorization to run transactions is screened by the TP monitor and related
software, so resource managers such as DB2 treat the TP monitor as the
single authorized user. For example, any use of a CICS transaction must be
authenticated by CICS and the access privilege to the database must be
granted to CICS rather than the end user who invokes the CICS application.

v Multiple programs (transactions) are typically queued and executed on a
database server (which appears to DB2 to be a single, long-running
application program).

Due to the unique nature of this environment, DB2 has special behavior and
requirements for applications coded to run in it:
v Multiple databases can be connected to and updated within a unit of work,

without consideration of distributed unit of work precompiler options or
client settings.

v The DISCONNECT statement is disallowed, and will be rejected with
SQLCODE -30090 (SQLSTATE 25000) if attempted.

v The RELEASE statement is not supported, and will be rejected with a
-30090.

v COMMIT and ROLLBACK statements are not allowed within stored
procedures accessed by a TP monitor transaction.

v When two-phase commit flows are explicitly disabled for a transaction
(these are called LOCAL transactions in XA Interface terminology) only one
database can be accessed within that transaction. This database cannot be a
host, AS/400, or iSeries database that is accessed using SNA connectivity.
Local transactions to DB2® for OS/390® Version 5 using TCP/IP
connectivity are supported.

v LOCAL transactions should issue SQL COMMIT or SQL ROLLBACK at the
end of each transaction; otherwise, the transaction will be considered part
of the next transaction that is processed.

v Switching between current database connections is done through the use of
either SQL CONNECT or SQL SET CONNECTION. The authorization used
for a connection cannot be changed by specifying a user ID or password on
the CONNECT statement.

v If a database object such as a table, view, or index is not fully qualified in a
dynamic SQL statement, it will be implicitly qualified with the single
authentication ID that the TP monitor is executing under, rather than user’s
ID.

430 Programming Client Applications

v Any use of DB2 COMMIT or ROLLBACK statements for transactions that
are not LOCAL will be rejected. The following codes will be returned:
– SQLCODE -925 (SQLSTATE 2D521) for static COMMIT
– SQLCODE -926 (SQLSTATE 2D521) for static ROLLBACK
– SQLCODE -426 (SQLSTATE 2D528) for dynamic COMMIT
– SQLCODE -427 (SQLSTATE 2D529) for dynamic ROLLBACK

v CLI requests to COMMIT or ROLLBACK are also rejected.
v Handling database-initiated rollback:

In a DTP environment, if an RM has initiated a rollback (for instance, due
to a system error or deadlock) to terminate its own branch of a global
transaction, it must not process any more requests from the same
application process until a transaction manager-initiated sync point request
occurs. This includes deadlocks that occur within a stored procedure. For
the database manager, this means rejecting all subsequent SQL requests
with SQLCODE -918 (SQLSTATE 51021) to inform you that you must roll
back the global transaction with the transaction manager’s sync point
service such as using the CICS SYNCPOINT ROLLBACK command in a
CICS environment. If for some reason you request the TM to commit the
transaction instead, the RM will inform the TM about the rollback and
cause the TM to roll back other RMs anyway.

v Cursors declared WITH HOLD:
Cursors declared WITH HOLD are supported in XA/DTP environments for
CICS transaction processing monitors.
In cases where cursors declared WITH HOLD are not supported, the OPEN
statement will be rejected with SQLCODE -30090 (SQLSTATE 25000), reason
code 03.
It is the responsibility of the transactions to ensure that cursors specified to
be WITH HOLD are explicitly closed when they are no longer required;
otherwise, they might be inherited by other transactions, causing conflict or
unnecessary use of resources.
If the TP monitor supports WITH HOLD cursors, the xa_commit,
xa_rollback and xa_prepare must be issued on the same connection as the
global transaction.

v Statements that update or change a database are not allowed against
databases that do not support two-phase commit request flows. For
example, accessing host, AS/400, or iSeries database servers in
environments in which level 2 of DRDA® protocol (DRDA2) is not
supported.

v Whether a database supports updates in an XA environment can be
determined at run-time by issuing a CONNECT statement. The third
SQLERRD token will have the value 1 if the database is updatable;
otherwise, this token will have the value 2.

Chapter 16. Managing Transactions 431

v When updates are restricted, only the following SQL statements will be
allowed:

CONNECT
DECLARE
DESCRIBE
EXECUTE IMMEDIATE (where the first token or keyword is SET but

not SET CONSTRAINTS)
OPEN CURSOR
FETCH CURSOR
CLOSE CURSOR
PREPARE (where the first token or keyword that is not blank or

left parenthesis is SET (other than SET CONSTRAINTS),
SELECT, WITH, or VALUES)

SELECT...INTO
VALUES...INTO

Any other attempts will be rejected with SQLCODE -30090 (SQLSTATE
25000).

The PREPARE statement will only be usable to prepare SELECT statements.
The EXECUTE IMMEDIATE statement is also allowed to execute SQL SET
statements that do not return any output value, such as the SET SQLID
statement from DB2 Universal Database for OS/390 and z/OS.

v API Restrictions:
APIs that internally issue a commit in the database and bypass the
two-phase commit process will be rejected with SQLCODE -30090
(SQLSTATE 25000). For a list of these APIs, see the article on restrictions on
multisite update applications. These APIs are not supported in a multisite
update (Connect Type 2).

v DB2 supports a multi-threaded XA/DTP environment.

Note that the above restrictions apply to applications running in a TP monitor
environment that uses the XA interface. If DB2 databases are not defined for
use with the XA interface, these restrictions do not apply; however, it is still
necessary to ensure that transactions are coded in a way that will not leave
DB2 in a state that will adversely affect the next transaction to be run.

Related concepts:

v “Security considerations for XA transaction managers” in the Administration
Guide: Planning

v “Configuration considerations for XA transaction managers” in the
Administration Guide: Planning

v “XA function supported by DB2 UDB” in the Administration Guide: Planning

v “Multisite Update with DB2 Connect” on page 492

Related tasks:

432 Programming Client Applications

v “Updating host or iSeries database servers with an XA-compliant
transaction manager” in the Administration Guide: Planning

Application Linkage and the X/Open XA Interface

To produce an executable application, you need to link in the application
objects with the language libraries, the operating system libraries, the normal
database manager libraries, and the libraries of the TP monitor and
transaction manager products.

Chapter 16. Managing Transactions 433

434 Programming Client Applications

Chapter 17. Programming Considerations for Partitioned
Database Environments

FOR READ ONLY Cursors in a Partitioned
Database Environment 435
Directed DSS and Local Bypass 435

Directed DSS and Local Bypass in
Partitioned Database Environments . . . 435
Directed DSS in Partitioned Database
Environments 436
Local Bypass in Partitioned Database
Environments 437

Buffered Inserts 437
Buffered Inserts in Partitioned Database
Environments 437
Considerations for Using Buffered Inserts 440

Restrictions on Using Buffered Inserts . . 443
Example of Extracting a Large Volume of
Data in a Partitioned Database Environment . 443
Creating a Simulated Partitioned Database
Environment 449
Troubleshooting 449

Error-Handling Considerations in
Partitioned Database Environments . . . 450
Severe Errors in Partitioned Database
Environments 450
Merged Multiple SQLCA Structures. . . 451
Partition That Returns the Error 452
Looping or Suspended Applications . . 452

FOR READ ONLY Cursors in a Partitioned Database Environment

If you declare a cursor from which you intend only to read, include FOR
READ ONLY or FOR FETCH ONLY in the OPEN CURSOR declaration. (FOR
READ ONLY and FOR FETCH ONLY are equivalent statements.) FOR READ
ONLY cursors allow the coordinator partition to retrieve multiple rows at a
time, dramatically improving the performance of subsequent FETCH
statements. When you do not explicitly declare cursors FOR READ ONLY, the
coordinator partition treats them as updatable cursors. Updatable cursors
incur considerable expense because they require the coordinator partition to
retrieve only a single row per FETCH.

Directed DSS and Local Bypass

The sections that follow describe considerations for using directed DSS and
local bypass in partitioned database environments.

Directed DSS and Local Bypass in Partitioned Database Environments

To optimize online transaction processing (OLTP) applications, you may want
to avoid simple SQL statements that require processing on all database
partitions. You should design the application so that SQL statements can
retrieve data from single database partitions. The directed distributed
subsection (DSS) and local bypass techniques avoid the expense the
coordinator partition incurs communicating with one or all of the associated
partitions.

© Copyright IBM Corp. 1993-2002 435

Related concepts:

v “Directed DSS in Partitioned Database Environments” on page 436
v “Local Bypass in Partitioned Database Environments” on page 437

Directed DSS in Partitioned Database Environments

A distributed subsection (DSS) is the action of sending subsections to the
database partition that needs to do some work for a parallel query. It also
describes the initiation of subsections with invocation-specific values, such as
values of variables in an OLTP environment. A directed DSS uses the table
partitioning key to direct a query to a single partition. Use this type of query
in your application to avoid the coordinator partition overhead required for a
query broadcast to all partitions.

An example SELECT statement fragment that can take advantage of directed
DSS follows:

SELECT ... FROM t1
WHERE PARTKEY=:hostvar

When the coordinator partition receives the query, it determines which
database partition holds the subset of data for :hostvar, and directs the query
specifically to that database partition.

To optimize your application using directed DSS, divide complex queries into
multiple simple queries. For example, in the following query the coordinator
partition matches the partitioning key with multiple values. Because the data
that satisfies the query lies on multiple database partitions, the coordinator
partition broadcasts the query to all database partitions:

SELECT ... FROM t1
WHERE PARTKEY IN (:hostvar1, :hostvar2)

Instead, break the query into multiple SELECT statements (each with a single
host variable), or use a single SELECT statement with a UNION to achieve
the same result. The coordinator partition can take advantage of simpler
SELECT statements to use directed DSS to communicate only to the necessary
database partitions. The optimized query looks like:

SELECT ... AS res1 FROM t1
WHERE PARTKEY=:hostvar1
UNION

SELECT ... AS res2 FROM t1
WHERE PARTKEY=:hostvar2

Note that the above technique will only improve performance if the number
of selects in the UNION is significantly smaller than the number of partitions.

436 Programming Client Applications

Local Bypass in Partitioned Database Environments

A specialized form of the directed DSS query accesses data stored only on the
coordinator partition. This is called a local bypass because the coordinator
partition completes the query without having to communicate with another
partition.

Local bypass is enabled automatically whenever possible, but you can increase
its use by routing transactions to the database partition containing the data for
that transaction. One technique for doing this is to have a remote client
maintain connections to each database partition. A transaction can then use
the correct connection based on the input partitioning key. Another technique
is to group transactions by database partition and have a separate application
server for each database partition.

To determine the number of the database partition on which the transaction
data resides, you can use the sqlugrpn API (Get Row Partitioning Number).
This API allows an application to efficiently calculate the partition number of
a row, given the partitioning key.

Another alternative is to use the db2atld utility to divide input data by
partition number and run a copy of the application against each database
partition.

Related reference:

v “sqlugrpn - Get Row Partitioning Number” in the Administrative API
Reference

v “db2atld - Autoloader” in the Command Reference

Buffered Inserts

The sections that follow describe considerations for using buffered inserts in
partitioned database environments.

Buffered Inserts in Partitioned Database Environments

A buffered insert is an insert statement that takes advantage of table queues to
buffer the rows being inserted, thereby gaining a significant performance
improvement. To use a buffered insert, an application must be prepared or
bound with the INSERT BUF option.

Buffered inserts can result in substantial performance improvement in
applications that perform inserts. Typically, you can use a buffered insert in
applications where a single insert statement (and no other database
modification statement) is used within a loop to insert many rows and where
the source of the data is a VALUES clause in the INSERT statement. Typically

Chapter 17. Programming Considerations for Partitioned Database Environments 437

the INSERT statement is referencing one or more host variables that change
their values during successive executions of the loop. The VALUES clause can
specify a single row or multiple rows.

Typical decision support applications require the loading and periodic
insertion of new data. This data could be hundreds of thousands of rows. You
can prepare and bind applications to use buffered inserts when loading tables.

To cause an application to use buffered inserts, use the PREP command to
process the application program source file, or use the BIND command on the
resulting bind file. In both situations, you must specify the INSERT BUF
option.

Note: Buffered inserts cause the following steps to occur:
1. The database manager opens one 4 KB buffer for each database

partition on which the table resides.
2. The INSERT statement with the VALUES clause issued by the

application causes the row (or rows) to be placed into the
appropriate buffer (or buffers).

3. The database manager returns control to the application.
4. The rows in the buffer are sent to the partition when the buffer

becomes full, or an event occurs that causes the rows in a partially
filled buffer to be sent. A partially filled buffer is flushed when one
of the following occurs:
v The application issues a COMMIT (implicitly or explicitly

through application termination) or ROLLBACK.
v The application issues another statement that causes a savepoint

to be taken. OPEN, FETCH, and CLOSE cursor statements do not
cause a savepoint to be taken, nor do they close an open buffered
insert.
The following SQL statements will close an open buffered insert:
– BEGIN COMPOUND SQL
– COMMIT
– DDL
– DELETE
– END COMPOUND SQL
– EXECUTE IMMEDIATE
– GRANT
– INSERT to a different table
– PREPARE of the same dynamic statement (by name) doing

buffered inserts
– REDISTRIBUTE DATABASE PARTITION GROUP
– RELEASE SAVEPOINT
– REORG

438 Programming Client Applications

– REVOKE
– ROLLBACK
– ROLLBACK TO SAVEPOINT
– RUNSTATS
– SAVEPOINT
– SELECT INTO
– UPDATE
– Execution of any other statement, but not another (looping)

execution of the buffered INSERT
– End of application

The following APIs will close an open buffered insert:
– BIND (API)
– REBIND (API)
– RUNSTATS (API)
– REORG (API)
– REDISTRIBUTE (API)

In any of these situations where another statement closes the
buffered insert, the coordinator partition waits until every database
partition receives the buffers and the rows are inserted. It then
executes the other statement (the one closing the buffered insert),
provided all the rows were successfully inserted.

The standard interface in a partitioned environment, (without a buffered
insert) loads one row at a time doing the following steps (assuming that the
application is running locally on one of the database partitions):
1. The coordinator partition passes the row to the database manager that is

on the same partition.
2. The database manager uses indirect hashing to determine the database

partition where the row should be placed:
v The target partition receives the row.
v The target partition inserts the row locally.
v The target partition sends a response to the coordinator partition.

3. The coordinator partition receives the response from the target partition.
4. The coordinator partition gives the response to the application.

The insertion is not committed until the application issues a COMMIT.
5. Any INSERT statement containing the VALUES clause is a candidate for

buffered insert, regardless of the number of rows or the type of elements
in the rows. That is, the elements can be constants, special registers, host
variables, expressions, functions and so on.

For a given INSERT statement with the VALUES clause, the DB2® SQL
compiler may not buffer the insert based on semantic, performance, or

Chapter 17. Programming Considerations for Partitioned Database Environments 439

implementation considerations. If you prepare or bind your application with
the INSERT BUF option, ensure that it is not dependent on a buffered insert.
This means:
v Errors may be reported asynchronously for buffered inserts, or

synchronously for regular inserts. If reported asynchronously, an insert
error may be reported on a subsequent insert within the buffer, or on the
other statement that closes the buffer. The statement that reports the error is
not executed. For example, consider using a COMMIT statement to close a
buffered insert loop. The commit reports an SQLCODE -803 (SQLSTATE
23505) due to a duplicate key from an earlier insert. In this scenario, the
commit is not executed. If you want your application to really commit, for
example, some updates that are performed before it enters the buffered
insert loop, you must reissue the COMMIT statement.

v Rows inserted may be immediately visible through a SELECT statement
using a cursor without a buffered insert. With a buffered insert, the rows
will not be immediately visible. Do not write your application to depend on
these cursor-selected rows if you precompile or bind it with the INSERT
BUF option.

Buffered inserts result in the following performance advantages:
v Only one message is sent from the target partition to the coordinator

partition for each buffer received by the target partition.
v A buffer can contain a large number of rows, especially if the rows are

small.
v Parallel processing occurs as insertions are being done across partitions

while the coordinator partition is receiving new rows.

An application that is bound with INSERT BUF should be written so that the
same INSERT statement with VALUES clause is iterated repeatedly before any
statement or API that closes a buffered insert is issued.

Note: You should do periodic commits to prevent the buffered inserts from
filling the transaction log.

Related concepts:

v “Source File Creation and Preparation” on page 73
v “Package Creation Using the BIND Command” on page 83
v “Considerations for Using Buffered Inserts” on page 440
v “Restrictions on Using Buffered Inserts” on page 443

Considerations for Using Buffered Inserts

Buffered inserts exhibit behaviors that can affect an application program. This
behavior is caused by the asynchronous nature of the buffered inserts. Based

440 Programming Client Applications

on the values of the row’s partitioning key, each inserted row is placed in a
buffer destined for the correct partition. These buffers are sent to their
destination partitions as they become full, or an event causes them to be
flushed. You must be aware of the following, and account for them when
designing and coding the application:
v Certain error conditions for inserted rows are not reported when the

INSERT statement is executed. They are reported later, when the first
statement other than the INSERT (or INSERT to a different table) is
executed, such as DELETE, UPDATE, COMMIT, or ROLLBACK. Any
statement or API that closes the buffered insert statement can see the error
report. Also, any invocation of the insert itself may see an error of a
previously inserted row. Moreover, if a buffered insert error is reported by
another statement, such as UPDATE or COMMIT, DB2® will not attempt to
execute that statement.

v An error detected during the insertion of a group of rows causes all the rows
of that group to be backed out. A group of rows is defined as all the rows
inserted through executions of a buffered insert statement:
– From the beginning of the unit of work,
– Since the statement was prepared (if it is dynamic), or
– Since the previous execution of another updating statement. For a list of

statements that close (or flush) a buffered insert, see the description of
buffered inserts in partitioned database environments.

v An inserted row may not be immediately visible to SELECT statements
issued after the INSERT by the same application program, if the SELECT is
executed using a cursor.

A buffered INSERT statement is either open or closed. The first invocation of
the statement opens the buffered INSERT, the row is added to the appropriate
buffer, and control is returned to the application. Subsequent invocations add
rows to the buffer, leaving the statement open. While the statement is open,
buffers may be sent to their destination partitions, where the rows are inserted
into the target table’s partition. If any statement or API that closes a buffered
insert is invoked while a buffered INSERT statement is open (including
invocation of a different buffered INSERT statement), or if a PREPARE
statement is issued against an open buffered INSERT statement, the open
statement is closed before the new request is processed. If the buffered
INSERT statement is closed, the remaining buffers are flushed. The rows are
then sent to the target partitions and inserted. Only after all the buffers are
sent and all the rows are inserted does the new request begin processing.

If errors are detected during the closing of the INSERT statement, the SQLCA
for the new request will be filled in describing the error, and the new request
is not done. Also, the entire group of rows that were inserted through the

Chapter 17. Programming Considerations for Partitioned Database Environments 441

buffered INSERT statement since it was opened are removed from the database.
The state of the application will be as defined for the particular error detected.
For example:
v If the error is a deadlock, the transaction is rolled back (including any

changes made before the buffered insert section was opened).
v If the error is a unique key violation, the state of the database is the same

as before the statement was opened. The transaction remains active, and
any changes made before the statement was opened are not affected.

For example, consider the following application that is bound with the
buffered insert option:

EXEC SQL UPDATE t1 SET COMMENT=’about to start inserts’;
DO UNTIL EOF OR SQLCODE < 0;

READ VALUE OF hv1 FROM A FILE;
EXEC SQL INSERT INTO t2 VALUES (:hv1);
IF 1000 INSERTS DONE, THEN DO

EXEC SQL INSERT INTO t3 VALUES (’another 1000 done’);
RESET COUNTER;

END;
END;
EXEC SQL COMMIT;

Suppose the file contains 8 000 values, but value 3 258 is not legal (for
example, a unique key violation). Each 1 000 inserts results in the execution of
another SQL statement, which then closes the INSERT INTO t2 statement.
During the fourth group of 1 000 inserts, the error for value 3 258 will be
detected. It may be detected after the insertion of more values (not necessarily
the next one). In this situation, an error code is returned for the INSERT INTO
t2 statement.

The error may also be detected when an insertion is attempted on table t3,
which closes the INSERT INTO t2 statement. In this situation, the error code is
returned for the INSERT INTO t3 statement, even though the error applies to
table t2.

Suppose, instead, that you have 3 900 rows to insert. Before being told of the
error on row number 3 258, the application may exit the loop and attempt to
issue a COMMIT. The unique-key-violation return code will be issued for the
COMMIT statement, and the COMMIT will not be performed. If the
application wants to COMMIT the 3 000 rows that are in the database thus far
(the last execution of EXEC SQL INSERT INTO t3 ... ends the savepoint for
those 3 000 rows), the COMMIT has to be reissued. Similar considerations
apply to ROLLBACK as well.

Note: When using buffered inserts, you should carefully monitor the
SQLCODES returned to avoid having the table in an indeterminate
state. For example, if you remove the SQLCODE < 0 clause from the

442 Programming Client Applications

THEN DO statement in the above example, the table could end up
containing an indeterminate number of rows.

Related concepts:

v “Buffered Inserts in Partitioned Database Environments” on page 437

Restrictions on Using Buffered Inserts

The following restrictions apply to buffered inserts:
v For an application to take advantage of the buffered inserts, one of the

following must be true:
– The application must either be prepared through PREP or bound with

the BIND command and the INSERT BUF option is specified.
– The application must be bound using the BIND or the PREP API with

the SQL_INSERT_BUF option.
v If the INSERT statement with VALUES clause includes long fields or LOBS

in the explicit or implicit column list, the INSERT BUF option is ignored for
that statement and a normal insert section is done, not a buffered insert.
This is not an error condition, and no error or warning message is issued.

v INSERT with fullselect is not affected by INSERT BUF. A buffered insert
does not improve the performance of this type of INSERT.

v Buffered inserts can be used only in applications, and not through
CLP-issued inserts, as these are done through the EXECUTE IMMEDIATE
statement.

The application can then be run from any supported client platform.

Example of Extracting a Large Volume of Data in a Partitioned Database
Environment

Although DB2 Universal Database provides excellent features for parallel
query processing, the single point of connection of an application or an
EXPORT command can become a bottleneck if you are extracting large
volumes of data. This bottleneck occurs because the passing of data from the
database manager to the application is a CPU-intensive process that executes
on a single partition (typically a single processor as well).

DB2 Universal Database provides several methods to overcome the bottleneck,
so that the volume of extracted data scales linearly per unit of time with an
increasing number of processors. The following example describes the basic
idea behind these methods.

Chapter 17. Programming Considerations for Partitioned Database Environments 443

Assume that you have a table called EMPLOYEE which is stored on 20
database partitions, and you generate a mailing list (FIRSTNME, LASTNAME,
JOB) of all employees who are in a legitimate department (that is,
WORKDEPT is not NULL).

The following query is run on each partition, then generates the entire answer
set at a single partition (the coordinator partition):

SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL

But, the following query could be run on each partition for the database (that
is, if there are five partitions, five separate queries are required, one at each
partition). Each query generates the set of all the employee names whose
record is on the particular partition where the query runs. Each local result set
can be redirected to a file. The result sets then need to be merged into a single
result set.

On AIX, you can use a property of Network File System (NFS) files to
automate the merge. If all the partitions direct their answer sets to the same
file on an NFS mount, the results are merged. Note that using NFS without
blocking the answer into large buffers results in very poor performance.

SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL
AND NODENUMBER(NAME) = CURRENT NODE

The result can either be stored in a local file (meaning that the final result
would be 20 files, each containing a portion of the complete answer set), or in
a single NFS-mounted file.

The following example uses the second method, so that the result is in a
single file that is NFS mounted across the 20 nodes. The NFS locking
mechanism ensures serialization of writes into the result file from the different
partitions. Note that this example, as presented, runs on the AIX® platform
with an NFS file system installed.
#define _POSIX_SOURCE
#define INCL_32

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sqlenv.h>
#include <errno.h>
#include <sys/access.h>
#include <sys/flock.h>
#include <unistd.h>

#define BUF_SIZE 1500000 /* Local buffer to store the fetched records */
#define MAX_RECORD_SIZE 80 /* >= size of one written record */

444 Programming Client Applications

int main(int argc, char *argv[]) {

EXEC SQL INCLUDE SQLCA;
EXEC SQL BEGIN DECLARE SECTION;

char dbname[10]; /* Database name (argument of the program) */
char userid[9];
char passwd[19];
char first_name[21];
char last_name[21];
char job_code[11];

EXEC SQL END DECLARE SECTION;

struct flock unlock ; /* structures and variables for handling */
struct flock lock ; /* the NFS locking mechanism */
int lock_command ;
int lock_rc ;
int iFileHandle ; /* output file */
int iOpenOptions = 0 ;
int iPermissions ;
char * file_buf ; /* pointer to the buffer where the fetched

records are accumulated */
char * write_ptr ; /* position where the next record is written */
int buffer_len = 0 ; /* length of used portion of the buffer */

/* Initialization */

lock.l_type = F_WRLCK; /* An exclusive write lock request */
lock.l_start = 0; /* To lock the entire file */
lock.l_whence = SEEK_SET;
lock.l_len = 0;
unlock.l_type = F_UNLCK; /* An release lock request */
unlock.l_start = 0; /* To unlock the entire file */
unlock.l_whence = SEEK_SET;
unlock.l_len = 0;
lock_command = F_SETLKW; /* Set the lock */
iOpenOptions = O_CREAT; /* Create the file if not exist */
iOpenOptions |= O_WRONLY; /* Open for writing only */

/* Connect to the database */

if (argc == 3) {
strcpy(dbname, argv[2]); /* get database name from the argument */
EXEC SQL CONNECT TO :dbname IN SHARE MODE ;
if (SQLCODE != 0) {

printf("Error: CONNECT TO the database failed. SQLCODE = %ld\n",
SQLCODE);

exit(1);
}

}
else if (argc == 5) {

strcpy(dbname, argv[2]); /* get database name from the argument */
strcpy (userid, argv[3]);
strcpy (passwd, argv[4]);
EXEC SQL CONNECT TO :dbname IN SHARE MODE USER :userid USING :passwd;
if (SQLCODE != 0) {

printf("Error: CONNECT TO the database failed. SQLCODE = %ld\n",

Chapter 17. Programming Considerations for Partitioned Database Environments 445

SQLCODE);
exit(1);

}
}
else {

printf ("\nUSAGE: largevol txt_file database [userid passwd]\n\n");
exit(1) ;

} /* endif */
/* Open the input file with the specified access permissions */

if ((iFileHandle = open(argv[1], iOpenOptions, 0666)) == -1) {
printf("Error: Could not open %s.\n", argv[2]) ;
exit(2) ;

}

/* Set up error and end of table escapes */

EXEC SQL WHENEVER SQLERROR GO TO ext ;
EXEC SQL WHENEVER NOT FOUND GO TO cls ;

/* Declare and open the cursor */

EXEC SQL DECLARE c1 CURSOR FOR
SELECT firstnme, lastname, job FROM employee
WHERE workdept IS NOT NULL
AND NODENUMBER(lastname) = CURRENT NODE;

EXEC SQL OPEN c1 ;

/* Set up the temporary buffer for storing the fetched result */

if ((file_buf = (char *) malloc(BUF_SIZE)) == NULL) {
printf("Error: Allocation of buffer failed.\n") ;
exit(3) ;

}
memset(file_buf, 0, BUF_SIZE) ; /* reset the buffer */
buffer_len = 0 ; /* reset the buffer length */
write_ptr = file_buf ; /* reset the write pointer */
/* For each fetched record perform the following */
/* - insert it into the buffer following the */
/* previously stored record */
/* - check if there is still enough space in the */
/* buffer for the next record and lock/write/ */
/* unlock the file and initialize the buffer */
/* if not */

do {
EXEC SQL FETCH c1 INTO :first_name, :last_name, :job_code;
buffer_len += sprintf(write_ptr, "%s %s %s\n",

first_name, last_name, job_code);
buffer_len = strlen(file_buf) ;
/* Write the content of the buffer to the file if */
/* the buffer reaches the limit */
if (buffer_len >= (BUF_SIZE - MAX_RECORD_SIZE)) {
/* get excl. write lock */
lock_rc = fcntl(iFileHandle, lock_command, &lock);

446 Programming Client Applications

if (lock_rc != 0) goto file_lock_err;
/* position at the end of file */
lock_rc = lseek(iFileHandle, 0, SEEK_END);
if (lock_rc < 0) goto file_seek_err;
/* write the buffer */
lock_rc = write(iFileHandle,

(void *) file_buf, buffer_len);
if (lock_rc < 0) goto file_write_err;

/* release the lock */
lock_rc = fcntl(iFileHandle, lock_command, &unlock);
if (lock_rc != 0) goto file_unlock_err;
file_buf[0] = ’\0’ ; /* reset the buffer */
buffer_len = 0 ; /* reset the buffer length */
write_ptr = file_buf ; /* reset the write pointer */

}
else {

write_ptr = file_buf + buffer_len ; /* next write position */
}

} while (1) ;

cls:
/* Write the last piece of data out to the file */
if (buffer_len > 0) {

lock_rc = fcntl(iFileHandle, lock_command, &lock);
if (lock_rc != 0) goto file_lock_err;
lock_rc = lseek(iFileHandle, 0, SEEK_END);
if (lock_rc < 0) goto file_seek_err;
lock_rc = write(iFileHandle, (void *)file_buf, buffer_len);
if (lock_rc < 0) goto file_write_err;
lock_rc = fcntl(iFileHandle, lock_command, &unlock);
if (lock_rc != 0) goto file_unlock_err;

}
free(file_buf);

close(iFileHandle);
EXEC SQL CLOSE c1;
exit (0);

ext:
if (SQLCODE != 0)

printf("Error: SQLCODE = %ld.\n", SQLCODE);
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL CONNECT RESET;
if (SQLCODE != 0) {

printf("CONNECT RESET Error: SQLCODE = %ld\n", SQLCODE);
exit(4);

}
exit (5);

file_lock_err:
printf("Error: file lock error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(6);

file_seek_err:
printf("Error: file seek error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);

Chapter 17. Programming Considerations for Partitioned Database Environments 447

exit(7);
file_write_err:

printf("Error: file write error = %ld.\n",lock_rc);
/* unconditional unlock of the file */

fcntl(iFileHandle, lock_command, &unlock);
exit(8);

file_unlock_err:
printf("Error: file unlock error = %ld.\n",lock_rc);

/* unconditional unlock of the file */
fcntl(iFileHandle, lock_command, &unlock);
exit(9);

}

This method is applicable not only to a select from a single table, but also for
more complex queries. If, however, the query requires noncollocated
operations (that is, the Explain shows more than one subsection besides the
Coordinator subsection), this can result in too many processes on some
partitions if the query is run in parallel on all partitions. In this situation, you
can store the query result in a temporary table TEMP on as many partitions as
required, then do the final extract in parallel from TEMP.

If you want to extract all employees, but only for selected job classifications,
you can define the TEMP table with the column names, FIRSTNME,
LASTNAME, and JOB, as follows:

INSERT INTO TEMP
SELECT FIRSTNME, LASTNAME, JOB FROM EMPLOYEE WHERE WORKDEPT IS NOT NULL

AND EMPNO NOT IN (SELECT EMPNO FROM EMP_ACT WHERE
EMPNO<200)

Then you would perform the parallel extract on TEMP.

When defining the TEMP table, consider the following:
v If the query specifies an aggregation GROUP BY, you should define the

partitioning key of TEMP as a subset of the GROUP BY columns.
v The partitioning key of the TEMP table should have enough cardinality

(that is, number of distinct values in the answer set) to ensure that the table
is equally distributed across the partitions on which it is defined.

v Create the TEMP table with the NOT LOGGED INITIALLY attribute, then
COMMIT the unit of work that created the table to release any acquired
catalog locks.

v When you use the TEMP table, you should issue the following statements
in a single unit of work:
1. ALTER TABLE TEMP ACTIVATE NOT LOGGED INITIALLY WITH

EMPTY TABLE (to empty the TEMP table and turn logging off)
2. INSERT INTO TEMP SELECT FIRSTNAME...
3. COMMIT

448 Programming Client Applications

This technique allows you to insert a large answer set into a table without
logging and without catalog contention. However, if a table has the NOT
LOGGED INITIALLY attribute activated, a non-logged activity occurs and
either of the following situations occur::
– A statement fails, causing a rollback
– A ROLLBACK TO SAVEPOINT is executed

the entire unit of work is rolled back (SQL1476N), resulting in an unusable
TEMP table. If this occurs, you will have to drop and recreate the TEMP
table. For this reason, you should not use this technique to add data to a
table that you could not easily recreate.

If you require the final answer set (which is the merged partial answer set
from all partitions) to be sorted, you can:
v Specify the SORT BY clause on the final SELECT
v Do an extract into a separate file on each partition
v Merge the separate files into one output set using, for example, the sort -m

AIX command.

Creating a Simulated Partitioned Database Environment

You can create a test environment for your partitioned environment
applications without setting up a partitioned database environment.

Procedure:

To create a simulated partitioned database environment:
1. Create a model of your database design with DB2 Enterprise Server

Edition.
2. Create sample tables with the PARTITIONING KEY clause that you will

use to distribute your data across partitions in the production
environment.

3. Develop and run your applications against the test database.

DB2 Enterprise Server Edition enforces the partitioning key constraints that
apply in a partitioned database environment, and provides a useful test
environment for your applications.

Troubleshooting

The sections that follow describe how to troubleshoot applications in a
partitioned database environment.

Chapter 17. Programming Considerations for Partitioned Database Environments 449

Error-Handling Considerations in Partitioned Database Environments

In a partitioned database environment, DB2® breaks up SQL statements into
subsections, each of which is processed on the partition that contains the
relevant data. As a result, an error may occur on a partition that does not
have access to the application. This condition does not occur in a
nonpartitioned database environment.

You should consider the following:
v Non-CURSOR (EXECUTE) non-severe errors
v CURSOR non-severe errors
v Severe errors
v Merged multiple SQLCA structures
v How to identify the partition that returned the error

If an application ends abnormally because of a severe error, indoubt
transactions may be left in the database. (An indoubt transaction pertains to
global transactions when one phase completes successfully, but the system
fails before the subsequent phase can complete, leaving the database in an
inconsistent state.)

Related concepts:

v “Severe Errors in Partitioned Database Environments” on page 450
v “Merged Multiple SQLCA Structures” on page 451
v “Partition That Returns the Error” on page 452

Related tasks:

v “Manually resolving indoubt transactions” in the Administration Guide:
Planning

Severe Errors in Partitioned Database Environments

If a severe error occurs in a partitioned database environment, one of the
following will occur:
v The database manager on the partition where the error occurs shuts down.

Active units of work are not rolled back.
In this situation, you must recover the partition and any databases that
were active on the partition when the shutdown occurred.

v All agents are forced off the database at the partition where the error
occurred.
All units of work on that database are rolled back.
In this situation, the database partition where the error occurred is marked
as inconsistent. Any attempt to access it results in either SQLCODE -1034
(SQLSTATE 58031) or SQLCODE -1015 (SQLSTATE 55025) being returned.

450 Programming Client Applications

Before you or any other application on another partition can access this
database partition, you must run the RESTART DATABASE command
against the database.

The severe error SQLCODE -30081 (SQLSTATE 08001) can occur for a variety
of reasons. If you receive this message, check the SQLCA, which will indicate
which partition failed. Then check the administration notification log file for
details.

Related concepts:

v “Partition That Returns the Error” on page 452

Related reference:

v “RESTART DATABASE” in the Command Reference

Merged Multiple SQLCA Structures

One SQL statement may be executed by a number of agents on different
database partition, and each agent may return a different SQLCA for different
errors or warnings. The coordinating agent also has its own SQLCA. In
addition, the SQLCA also has fields that indicate global numbers (such as the
sqlerrd fields that indicate row counts). To provide a consistent view for
applications, all the SQLCA values are merged into one structure.

Error reporting is as follows:
v Severe error conditions are always reported. As soon as a severe error is

reported, no additions beyond the severe error are added to the SQLCA.
v If no severe error occurs, a deadlock error takes precedence over other

errors.
v For all other errors, the SQLCA for the first negative SQLCODE is returned

to the application.
v If no negative SQLCODEs are detected, the SQLCA for the first warning

(that is, positive SQLCODE) is returned to the application. The exception to
this occurs if a data manipulation operation is issued on a table that is
empty on one partition, but has data on other partitions. The SQLCODE
+100 is only returned to the application if agents from all partitions return
SQL0100W, either because the table is empty on all partitions or there are
no rows that satisfy the WHERE clause in an UPDATE statement.

v For all errors and warnings, the sqlwarn field contains the warning flags
received from all agents.

v The values in the sqlerrd fields that indicate row counts are accumulations
from all agents.

Chapter 17. Programming Considerations for Partitioned Database Environments 451

An application may receive a subsequent error or warning after the problem
that caused the first error or warning is corrected. Errors are reported to the
SQLCA to ensure that the first error detected is given priority over others.
This ensures that an error caused by an earlier error cannot overwrite the
original error. Severe errors and deadlock errors are given higher priority
because they require immediate action by the coordinating agent.

Related reference:

v “SQLCA” in the Administrative API Reference

Partition That Returns the Error

If a partition returns an error or warning, its number is in the SQLERRD(6)
field of the SQLCA. The number in this field is the same as that specified for
the partition in the db2nodes.cfg file.

If an SQL statement or API call is successful, the partition number in this field
is not significant.

Related reference:

v “SQLCA” in the Administrative API Reference

Looping or Suspended Applications

It is possible that, after you start a query or application, you suspect that it is
suspended (it does not show any activity) or that it is looping (it shows
activity, but no results are returned to the application). Ensure that you have
turned lock timeouts on. In some situations, however, no error is returned. In
these situations, you may find the diagnostic tools provided with DB2® and
the database system monitor snapshot helpful.

One of the functions of the database system monitor that is useful for
debugging applications is to display the status of all active agents. To obtain
the greatest use from a snapshot, ensure that statement collection is being
done before you run the application (preferably immediately after you run
DB2START) as follows:

db2_all "db2 UPDATE MONITOR SWITCHES USING STATEMENT ON"

When you suspect that your application or query is either stalled or looping,
issue the following command:

db2_all "db2 GET SNAPSHOT FOR AGENTS ON database

Related concepts:

v “Database system monitor” in the System Monitor Guide and Reference

452 Programming Client Applications

v “The database system-monitor information” in the Administration Guide:
Performance

Related reference:

v “GET SNAPSHOT” in the Command Reference

v “UPDATE MONITOR SWITCHES” in the Command Reference

v “db2trc - Trace” in the Command Reference

v “db2support - Problem Analysis and Environment Collection Tool” in the
Command Reference

Chapter 17. Programming Considerations for Partitioned Database Environments 453

454 Programming Client Applications

Chapter 18. Common DB2 Application Techniques

Generated Columns 455
Identity Columns 456
Sequential Values and Sequence Objects . . 457

Generation of Sequential Values 457
Management of Sequence Behavior . . . 459
Application Performance and Sequence
Objects 460
Sequence Objects Compared to Identity
Columns 461

Declared Temporary Tables and Application
Performance 461
Savepoints and Transactions 464

Transaction Management with Savepoints 464

Application Savepoints Compared to
Compound SQL Blocks 466
SQL Statements for Creating and
Controlling Savepoints 468
Restrictions on Savepoint Usage 468
Savepoints and Data Definition Language
(DDL). 469
Savepoints and Buffered Inserts 470
Savepoints and Cursor Blocking 470
Savepoints and XA-Compliant
Transaction Managers 471

Transmission of Large Volumes of Data
Across a Network. 471

Generated Columns

Rather than using cumbersome insert and update triggers, DB2® enables you
to include generated columns in your tables using the GENERATED ALWAYS
AS clause. A generated column is a column that derives the values for each
row from an expression, rather than from an insert or update operation. While
combining an update trigger and an insert trigger can achieve a similar effect,
using a generated column guarantees that the derived value is consistent with
the expression.

To create a generated column in a table, use the GENERATED ALWAYS AS
clause for the column and include the expression from which the value for the
column will be derived. You can include the GENERATED ALWAYS AS clause
in ALTER TABLE and CREATE TABLE statements. The following example
creates a table with two regular columns, “c1” and “c2”, and two generated
columns, “c3” and “c4”, that are derived from the regular columns of the
table.

CREATE TABLE T1(c1 INT, c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2),
c4 GENERATED ALWAYS AS

(CASE
WHEN c1 > c2 THEN 1
ELSE NULL

END)
);

Related tasks:

v “Defining a generated column on a new table” in the Administration Guide:
Implementation

© Copyright IBM Corp. 1993-2002 455

v “Defining a generated column on an existing table” in the Administration
Guide: Implementation

Related reference:

v “ALTER TABLE statement” in the SQL Reference, Volume 2

v “CREATE TABLE statement” in the SQL Reference, Volume 2

Related samples:

v “TbGenCol.java -- How to use generated columns (JDBC)”

Identity Columns

Identity columns provide DB2® application developers with an easy way of
automatically generating a numeric column value for every row in a table.
You can have this value generated as a unique value, then define the identity
column as the primary key for the table. To create an identity column, include
the IDENTITY clause in the CREATE TABLE or ALTER TABLE statement.

Use identity columns in your applications to avoid the concurrency and
performance problems that can occur when an application generates its own
unique counter outside the database. When you do not use identity columns
to automatically generate unique primary keys, a common design is to store a
counter in a table with a single row. Each transaction then locks this table,
increments the number, and then commits the transaction to unlock the
counter. Unfortunately, this design only allows a single transaction to
increment the counter at a time.

In contrast, if you use an identity column to automatically generate primary
keys, the application can achieve much higher levels of concurrency. With
identity columns, DB2 maintains the counter so that transactions do not have
to lock the counter. Applications that use identity columns can perform better
because an uncommitted transaction that has incremented the counter does
not prevent other subsequent transactions from also incrementing the counter.

The counter for the identity column is incremented or decremented
independently of the transaction. If a given transaction increments an identity
counter two times, that transaction may see a gap in the two numbers that are
generated because there may be other transactions concurrently incrementing
the same identity counter.

An identity column may appear to have generated gaps in the counter, as the
result of a transaction that was rolled back, or because the database cached a
range of values that have been deactivated (normally or abnormally) before all
the cached values were assigned.

456 Programming Client Applications

To retrieve the generated value after inserting a new row into a table with an
identity column use the identity_val_local() function.

The IDENTITY clause is available on both the CREATE TABLE and ALTER
TABLE statements.

Related concepts:

v “Identity columns” in the Administration Guide: Planning

Related tasks:

v “Defining an identity column on a new table” in the Administration Guide:
Implementation

v “Modifying an identity column definition” in the Administration Guide:
Implementation

v “Altering an identity column” in the Administration Guide: Implementation

Related reference:

v “ALTER TABLE statement” in the SQL Reference, Volume 2

v “CREATE TABLE statement” in the SQL Reference, Volume 2

Related samples:

v “tbident.sqc -- How to use identity columns (C)”
v “TbIdent.java -- How to use Identity Columns (JDBC)”
v “TbIdent.sqlj -- How to use Identity Columns (SQLj)”

Sequential Values and Sequence Objects

The sections that follow describe considerations for sequential values and
sequence objects.

Generation of Sequential Values

Generating sequential values is a common database application development
problem. The best solution to that problem is to use sequence objects and
sequence expressions in SQL. Each sequence object is a uniquely named
database object that can be accessed only by sequence expressions. There are
two sequence expressions: the PREVVAL expression and the NEXTVAL
expression. The PREVVAL expression returns the value most recently
generated in the application process for the specified sequence object. Any
NEXTVAL expressions occuring in the same statement as the PREVAL
expression have no effect on the value generated by the PREVAL expression
in that statement. The NEXTVAL sequence expression increments the value of
the sequence object and returns the new value of the sequence object.

Chapter 18. Common DB2 Application Techniques 457

To create a sequence object, issue the CREATE SEQUENCE statement. For
example, to create a sequence object called id_values using the default
attributes, issue the following statement:

CREATE SEQUENCE id_values

To generate the first value in the application session for the sequence object,
issue a VALUES statement using the NEXTVAL expression:
VALUES NEXTVAL FOR id_values

1

1

1 record(s) selected.

To display the current value of the sequence object, issue a VALUES statement
using the PREVVAL expression:
VALUES PREVVAL FOR id_values

1

1

1 record(s) selected.

You can repeatedly retrieve the current value of the sequence object, and the
value that the sequence object returns does not change until you issue a
NEXTVAL expression. In the following example, the PREVVAL expression
returns a value of 1, until the NEXTVAL expression in the current connection
increments the value of the sequence object:
VALUES PREVVAL FOR id_values

1

1

1 record(s) selected.

VALUES PREVVAL FOR id_values

1

1

1 record(s) selected.

VALUES NEXTVAL FOR id_values

1

2

458 Programming Client Applications

1 record(s) selected.

VALUES PREVVAL FOR id_values

1

2

1 record(s) selected.

To update the value of a column with the next value of the sequence object,
include the NEXTVAL expression in the UPDATE statement, as follows:
UPDATE staff

SET id = NEXTVAL FOR id_values
WHERE id = 350

To insert a new row into a table using the next value of the sequence object,
include the NEXTVAL expression in the INSERT statement, as follows:
INSERT INTO staff (id, name, dept, job)

VALUES (NEXTVAL FOR id_values, ‘Kandil’, 51, ‘Mgr’)

Related reference:

v “CREATE SEQUENCE statement” in the SQL Reference, Volume 2

Related samples:

v “DbSeq.java -- How to create, alter and drop a sequence in a database
(JDBC)”

Management of Sequence Behavior

You can tailor the behavior of sequence objects to meet the needs of your
application. You change change the attributes of a sequence object when you
issue the CREATE SEQUENCE statement to create a new sequence object, and
when you issue the ALTER SEQUENCE statement for an existing sequence
object. Following are some of the attributes of a sequence object that you can
specify:

Data type
The AS clause of the CREATE SEQUENCE statement specifies the
numeric data type of the sequence object. The data type determines
the possible minimum and maximum values of the sequence object
(the minimum and maximum values for a data type are listed in the
topic describing SQL limits). You cannot change the data type of a
sequence object; instead, you must drop the sequence object by
issuing the DROP SEQUENCE statement and issue a CREATE
SEQUENCE statement with the new data type.

Chapter 18. Common DB2 Application Techniques 459

Start value
The START WITH clause of the CREATE SEQUENCE statement sets
the initial value of the sequence object. The RESTART WITH clause of
the ALTER SEQUENCE statement resets the value of the sequence
object to a specified value.

Minimum value
The MINVALUE clause sets the minimum value of the sequence
object.

Maximum value
The MAXVALUE clause sets the maximum value of the sequence
object.

Increment value
The INCREMENT BY clause sets the value that each NEXTVAL
expression adds to the current value of the sequence object. To
decrement the value of the sequence object, specify a negative value.

Sequence cycling
The CYCLE clause causes the value of a sequence object that reaches
its maximum or minimum value to generate its respective minimum
value or maximum value on the following NEXTVAL expression.

For example, to create a sequence object called id_values that starts with a
minimum value of 0, has a maximum value of 1000, increments by 2 with
each NEXTVAL expression, and returns to its minimum value when the
maximum value is reached, issue the following statement:
CREATE SEQUENCE id_values

START WITH 0
INCREMENT BY 2
MAXVALUE 1000
CYCLE

Related reference:

v “SQL limits” in the SQL Reference, Volume 1

v “ALTER SEQUENCE statement” in the SQL Reference, Volume 2

v “CREATE SEQUENCE statement” in the SQL Reference, Volume 2

Application Performance and Sequence Objects

Like identity columns, using sequence objects to generate values generally
improves the performance of your applications in comparison to alternative
approaches. The alternative to sequence objects is to create a single-column
table that stores the current value and incrementing that value with either a
trigger or under the control of the application. In a distributed environment

460 Programming Client Applications

where applications concurrently access the single-column table, the locking
required to force serialized access to the table can seriously affect
performance.

Sequence objects avoid the locking issues that are associated with the
single-column table approach and can cache sequence values in memory to
improve DB2® response time. To maximize the performance of applications
that use sequence objects, ensure that your sequence object caches an
appropriate amount of sequence values. The CACHE clause of the CREATE
SEQUENCE and ALTER SEQUENCE statements specifies the maximum
number of sequence values that DB2 generates and stores in memory.

If your sequence object must generate values in order, without introducing
gaps in that order because of a system failure or database deactivation, use
the ORDER and NO CACHE clauses in the CREATE SEQUENCE statement.
The NO CACHE clause guarantees that no gaps appear in the generated
values at the cost of some of your application’s performance because it forces
your sequence object to write to the database log every time it generates a
new value. Note that gaps can still appear due to transactions that rollback
and do not actually use that sequence value that they requested.

Sequence Objects Compared to Identity Columns

Although sequence objects and identity columns appear to serve similar
purposes for DB2® applications, there is an important difference. An identity
column automatically generates values for a column in a single table. A
sequence object generates sequential values upon request that can be used in
any SQL statement.

Declared Temporary Tables and Application Performance

A declared temporary table is a temporary table that is only accessible to SQL
statements that are issued by the application which created the temporary
table. A declared temporary table does not persist beyond the duration of the
connection of the application to the database.

Use declared temporary tables to potentially improve the performance of your
applications. When you create a declared temporary table, DB2® does not
insert an entry into the system catalog tables; therefore, your server does not
suffer from catalog contention issues. In comparison to regular tables, DB2
does not lock declared temporary tables or their rows, and, if you specify the
NOT LOGGED parameter when you create it, does not log declared
temporary tables or their contents. If your current application creates tables to
process large amounts of data and drops those tables once the application has
finished manipulating that data, consider using declared temporary tables
instead of regular tables.

Chapter 18. Common DB2 Application Techniques 461

If you develop applications written for concurrent users, your applications can
take advantage of declared temporary tables. Unlike regular tables, declared
temporary tables are not subject to name collision. For each instance of the
application, DB2 can create a declared temporary table with an identical
name. For example, to write an application for concurrent users that uses
regular tables to process large amounts of temporary data, you must ensure
that each instance of the application uses a unique name for the regular table
that holds the temporary data. Typically, you would create another table that
tracks the names of the tables that are in use at any given time. With declared
temporary tables, simply specify one declared temporary table name for your
temporary data. DB2 guarantees that each instance of the application uses a
unique table.

To use a declared temporary table, perform the following steps:
Step 1. Ensure that a USER TEMPORARY TABLESPACE exists. If a USER

TEMPORARY TABLESPACE does not exist, issue a CREATE USER
TEMPORARY TABLESPACE statement.

Step 2. Issue a DECLARE GLOBAL TEMPORARY TABLE statement in your
application.

The schema for declared temporary tables is always SESSION. To use the
declared temporary table in your SQL statements, you must refer to the table
using the SESSION schema qualifier either explicitly or by using a DEFAULT
schema of SESSION to qualify any unqualified references. In the following
example, the table name is always qualified by the schema name SESSION
when you create a declared temporary table named TT1 with the following
statement:

DECLARE GLOBAL TEMPORARY TABLE TT1

To select the contents of the column1 column from the declared temporary
table created in the previous example, use the following statement:

SELECT column1 FROM SESSION.TT1;

Note that DB2 also enables you to create persistent tables with the SESSION
schema. If you create a persistent table with the qualified name SESSION.TT3,
you can then create a declared temporary table with the qualified name
SESSION.TT3. In this situation, DB2 always resolves references to persistent
and declared temporary tables with identical qualified names to the declared
temporary table. To avoid confusing persistent tables with declared temporary
tables, you should not create persistent tables using the SESSION schema.

If you create an application that includes a static SQL reference to a table,
view, or alias qualified with the SESSION schema, the DB2 precompiler does
not compile that statement at bind time and marks the statement as “needing
compilation”. At run time, DB2 compiles the statement. This behavior is called

462 Programming Client Applications

incremental binding. DB2 automatically performs incremental binding for static
SQL references to tables, views, and aliases qualified with the SESSION
schema. You do not need to specify the VALIDATE RUN option on the BIND
or PRECOMPILE command to enable incremental binding for these
statements.

If you issue a ROLLBACK statement for a transaction that includes a
DECLARE GLOBAL TEMPORARY TABLE statement, DB2 drops the declared
temporary table. If you issue a DROP TABLE statement for a declared
temporary table, issuing a ROLLBACK statement for that transaction only
restores an empty declared temporary table. A ROLLBACK of a DROP TABLE
statement does not restore the rows that existed in the declared temporary
table.

The default behavior of a declared temporary table is to delete all rows from
the table when you commit a transaction. However, if one or more WITH
HOLD cursors are still open on the declared temporary table, DB2 does not
delete the rows from the table when you commit a transaction. To avoid
deleting all rows when you commit a transaction, create the temporary table
using the ON COMMIT PRESERVE ROWS clause in the DECLARE GLOBAL
TEMPORARY TABLE statement.

If you modify the contents of a declared temporary table using an INSERT,
UPDATE, or DELETE statement within a transaction, and roll back that
transaction, DB2 deletes all of the rows of the declared temporary table. If you
attempt to modify the contents of a declared temporary table using an
INSERT, UPDATE, or DELETE statement, and the statement fails, DB2
behaves as follows:
v If the table was created without the NOT LOGGED parameter (that is, the

table is logged), only the changes made by the failed INSERT, UPDATE, or
DELETE statement are rolled back.

v If the table was created with the NOT LOGGED parameter, DB2 deletes all
of the rows of the declared temporary table.

When a failure is encountered in a partitioned database environment, all
declared temporary tables that exist on the failed database partition become
unusable. Any subsequent access to those unusable declared temporary tables
returns an error (SQL1477N). When your application encounters an unusable
declared temporary table, the application can either drop the table or recreate
the table by specifying the WITH REPLACE clause in the DECLARE GLOBAL
TEMPORARY TABLE statement.

Declared temporary tables are subject to a number of restrictions. For
example, you cannot define aliases or views for declared temporary tables.
You cannot use IMPORT and LOAD to populate declared temporary tables.

Chapter 18. Common DB2 Application Techniques 463

You can, with some restrictions, create indexes for declared temporary tables.
In addition, you can execute RUNSTATS against a declared temporary table to
update the statitics for the declared temporary table and its indexes.

Related reference:

v “DECLARE GLOBAL TEMPORARY TABLE statement” in the SQL
Reference, Volume 2

Related samples:

v “tbtemp.sqc -- How to use a declared temporary table (C)”
v “TbTemp.java -- How to use Declared Temporary Table (JDBC)”

Savepoints and Transactions

The sections that follow describe savepoints, and how to use them to manage
transactions.

Transaction Management with Savepoints

Application savepoints provide control over the work performed by a subset
of SQL statements in a transaction or unit of work. Within your application
you can set a savepoint, and later either release the savepoint or roll back the
work performed since you set the savepoint. You can use as many savepoints
as you require within a single transaction; however, you cannot nest
savepoints. The following example demonstrates the use of two savepoints
within a single transaction to control the behavior of an application:

Example of an order using application savepoints::
INSERT INTO order ...
INSERT INTO order_item ... lamp

-- set the first savepoint in the transaction
SAVEPOINT before_radio ON ROLLBACK RETAIN® CURSORS
INSERT INTO order_item ... Radio
INSERT INTO order_item ... Power Cord
-- Pseudo-SQL:
IF SQLSTATE = "No Power Cord"

ROLLBACK TO SAVEPOINT before_radio
RELEASE SAVEPOINT before_radio

-- set the second savepoint in the transaction
SAVEPOINT before_checkout ON ROLLBACK RETAIN CURSORS

INSERT INTO order ... Approval
-- Pseudo-SQL:
IF SQLSTATE = "No approval"

ROLLBACK TO SAVEPOINT before_checkout

-- commit the transaction, which releases the savepoint
COMMIT

464 Programming Client Applications

In the preceding example, the first savepoint enforces a dependency between
two data objects where the dependency is not intrinsic to the objects
themselves. You would not use referential integrity to describe the above
relationship between radios and power cords since one can exist without the
other. However, you do not want to ship the radio to the customer without a
power cord. You also would not want to cancel the order of the lamp by
rolling back the entire transaction because there are no power cords for the
radio. Application savepoints provide the granular control you need to
complete this order.

When you issue a ROLLBACK TO SAVEPOINT statement, the corresponding
savepoint is not automatically released. Any subsequent SQL statements are
associated with that savepoint, until the savepoint is released either explicitly
with a RELEASE SAVEPOINT statement or implicitly by ending the
transaction or unit of work. This means that you can issue multiple
ROLLBACK TO SAVEPOINT statements for a single savepoint.

Savepoints give you better performance and a cleaner application design than
using multiple COMMIT and ROLLBACK statements. When you issue a
COMMIT statement, DB2® must do some extra work to commit the current
transaction and start a new transaction. Savepoints allow you to break a
transaction into smaller units or steps without the added overhead of multiple
COMMIT statements. The following example demonstrates the performance
penalty incurred by using multiple transactions instead of savepoints:

Example of an order using multiple transactions::
INSERT INTO order ...
INSERT INTO order_item ... lamp
-- commit current transaction, start new transaction
COMMIT

INSERT INTO order_item ... Radio
INSERT INTO order_item ... Power Cord
-- Pseudo-SQL:
IF SQLSTATE = "No Power Cord"

-- roll back current transaction, start new transaction
ROLLBACK

ELSE
-- commit current transaction, start new transaction
COMMIT

INSERT INTO order ... Approval
-- Pseudo-SQL:
IF SQLSTATE = "No approval"

-- roll back current transaction, start new transaction
ROLLBACK

ELSE
-- commit current transaction, start new transaction
COMMIT

Chapter 18. Common DB2 Application Techniques 465

Another drawback of multiple commit points is that an object might be
committed and therefore visible to other applications before it is fully
completed. In the second example, the order is available to another user
before all the items have been added, and worse, before it has been approved.
Using application savepoints avoids this exposure to ’dirty data’ while
providing granular control over an operation.

Related samples:

v “tbsavept.sqc -- How to use external savepoints (C)”

Application Savepoints Compared to Compound SQL Blocks

Savepoints offer the following advantages over compound SQL blocks:
v Enhanced control of transactions
v Less locking contention
v Improved integration with application logic

Compound SQL blocks can either be ATOMIC or NOT ATOMIC. If a
statement within an ATOMIC compound SQL block fails, the entire compound
SQL block is rolled back. If a statement within a NOT ATOMIC compound
SQL block fails, the commit or roll back of the transaction, including the entire
compound SQL block, is controlled by the application. In comparison, if a
statement within the scope of a savepoint fails, the application can roll back
all of the statements in the scope of the savepoint, but commit the work
performed by statements outside of the scope of the savepoint. This option is
illustrated in the following example. If the work of the savepoint is rolled
back, the work of the two INSERT statements before the savepoint is
committed. Alternatively, the application can commit the work performed by
all of the statements in the transaction, including the statements within the
scope of the savepoint.

Example of an order using application savepoints::
INSERT INTO order ...
INSERT INTO order_item ... lamp

-- set the first savepoint in the transaction
SAVEPOINT before_radio ON ROLLBACK RETAIN® CURSORS
INSERT INTO order_item ... Radio
INSERT INTO order_item ... Power Cord
-- Pseudo-SQL:
IF SQLSTATE = "No Power Cord"

ROLLBACK TO SAVEPOINT before_radio
RELEASE SAVEPOINT before_radio

-- set the second savepoint in the transaction
SAVEPOINT before_checkout ON ROLLBACK RETAIN CURSORS

INSERT INTO order ... Approval
-- Pseudo-SQL:
IF SQLSTATE = "No approval"

466 Programming Client Applications

ROLLBACK TO SAVEPOINT before_checkout

-- commit the transaction, which releases the savepoint
COMMIT

When you issue a compound SQL block, DB2® simultaneously acquires the
locks needed for the entire compound SQL block of statements. When you set
an application savepoint, DB2 acquires locks as each statement in the scope of
the savepoint is issued. The locking behavior of savepoints can lead to
significantly less locking contention than compound SQL blocks, so unless
your application requires the locking performed by compound SQL
statements, it may be best to use savepoints.

Compound SQL blocks execute a complete set of statements as a single
statement. An application cannot use control structures or functions to add
statements to a compound SQL block. In comparison, when you set an
application savepoint, your application can issue SQL statements within the
scope of the savepoint by calling other application functions or methods,
through control structures such as while loops, or with dynamic SQL
statements. Application savepoints give you the freedom to integrate your
SQL statements with your application logic in an intuitive way.

For example, in the following example, the application sets a savepoint and
issues two INSERT statements within the scope of the savepoint. The
application uses an IF statement that, when true, calls the function
add_batteries(). The add_batteries() function issues an SQL statement that in
this context is included within the scope of the savepoint. Finally, the
application either rolls back the work performed within the savepoint
(including the SQL statement issued by the add_batteries() function), or
commits the work performed in the entire transaction:

Example of integrating savepoints and SQL statements within application
logic:
void add_batteries()
{

-- the work performed by the following statement
-- is controlled by the savepoint set in main()
INSERT INTO order_item ... Batteries

}

void main(int argc, char[] *argv)
{

INSERT INTO order ...
INSERT INTO order_item ... lamp

-- set the first savepoint in the transaction
SAVEPOINT before_radio ON ROLLBACK RETAIN CURSORS

INSERT INTO order_item ... Radio
INSERT INTO order_item ... Power Cord

Chapter 18. Common DB2 Application Techniques 467

if (strcmp(Radio..power_source(), "AC/DC"))
{

add_batteries();
}

-- Pseudo-SQL:
IF SQLSTATE = "No Power Cord"

ROLLBACK TO SAVEPOINT before_radio
COMMIT

}

SQL Statements for Creating and Controlling Savepoints

The following SQL statements enable you to create and control savepoints:

SAVEPOINT
To set a savepoint, issue a SAVEPOINT SQL statement. To improve
the clarity of your code, you can choose a meaningful name for the
savepoint. For example:

SAVEPOINT savepoint1 ON ROLLBACK RETAIN CURSORS

RELEASE SAVEPOINT
To release a savepoint, issue a RELEASE SAVEPOINT SQL statement.
If you do not explicitly release a savepoint with a RELEASE
SAVEPOINT SQL statement, it is released at the end of the
transaction. For example:

RELEASE SAVEPOINT savepoint1

ROLLBACK TO SAVEPOINT
To rollback to a savepoint, issue a ROLLBACK TO SAVEPOINT SQL
statement. For example:

ROLLBACK TO SAVEPOINT

Related reference:

v “ROLLBACK statement” in the SQL Reference, Volume 2

v “RELEASE SAVEPOINT statement” in the SQL Reference, Volume 2

v “SAVEPOINT statement” in the SQL Reference, Volume 2

Related samples:

v “tbsavept.sqc -- How to use external savepoints (C)”

Restrictions on Savepoint Usage

DB2® Universal Database places the following restrictions on your use of
savepoints in applications:

468 Programming Client Applications

Atomic compound SQL
DB2 does not enable you to use savepoints within atomic compound
SQL. You cannot use atomic compound SQL within a savepoint.

Nested Savepoints
DB2 does not support the use of a savepoint within another
savepoint.

Triggers
DB2 does not support the use of savepoints in triggers.

SET INTEGRITY statement
Within a savepoint, DB2 treats SET INTEGRITY statements as DDL
statements.

Related concepts:

v “Savepoints and Data Definition Language (DDL)” on page 469

Savepoints and Data Definition Language (DDL)

DB2® enables you to include DDL statements within a savepoint. If the
application successfully releases a savepoint that executes DDL statements, the
application can continue to use the SQL objects created by the DDL. However,
if the application issues a ROLLBACK TO SAVEPOINT statement for a
savepoint that executes DDL statements, DB2 marks any cursors that depend
on the effects of those DDL statements as invalid.

In the following example, the application attempts to fetch from three
previously opened cursors after issuing a ROLLBACK TO SAVEPOINT
statement:

SAVEPOINT savepoint_name;
PREPARE s1 FROM 'SELECT FROM t1';
--issue DDL statement for t1

ALTER TABLE t1 ADD COLUMN...
PREPARE s2 FROM 'SELECT FROM t2';
--issue DDL statement for t3

ALTER TABLE t3 ADD COLUMN...
PREPARE s3 FROM 'SELECT FROM t3';
OPEN c1 USING s1;
OPEN c2 USING s2;
OPEN c3 USING s3;

ROLLBACK TO SAVEPOINT
FETCH c1; --invalid (SQLCODE −910)
FETCH c2; --successful
FETCH c3; --invalid (SQLCODE −910)

At the ROLLBACK TO SAVEPOINT statement, DB2 marks cursors “c1” and
“c3” as invalid because the SQL objects on which they depend have been

Chapter 18. Common DB2 Application Techniques 469

manipulated by DDL statements within the savepoint. However, a FETCH
using cursor “c2” from the example is successful after the ROLLBACK TO
SAVEPOINT statement.

You can issue a CLOSE statement to close invalid cursors. If you issue a
FETCH against an invalid cursor, DB2 returns SQLCODE −910. If you issue an
OPEN statement against an invalid cursor, DB2 returns SQLCODE −502. If
you issue an UPDATE or DELETE WHERE CURRENT OF statement against
an invalid cursor, DB2 returns SQLCODE −910.

Within savepoints, DB2 treats tables with the NOT LOGGED INITIALLY
property and temporary tables as follows:

NOT LOGGED INITIALLY tables
Within a savepoint, you can create a table with the NOT LOGGED
INITIALLY property, or alter a table to have the NOT LOGGED
INITIALLY property. For these savepoints, however, DB2 treats
ROLLBACK TO SAVEPOINT statements as ROLLBACK WORK
statements and rolls back the entire transaction.

DECLARE TEMPORARY TABLE inside savepoint
If a temporary table is declared within a savepoint, a ROLLBACK TO
SAVEPOINT statement drops the temporary table.

DECLARE TEMPORARY TABLE outside savepoint
If a temporary table is declared outside a savepoint, a ROLLBACK TO
SAVEPOINT statement does not drop the temporary table.

Savepoints and Buffered Inserts

To improve the performance of DB2® applications, you can use buffered
inserts in your applications by precompiling or binding with the INSERT BUF
option. If your application takes advantage of both buffered inserts and
savepoints, DB2 flushes the buffer before executing SAVEPOINT, RELEASE
SAVEPOINT, OR ROLLBACK TO SAVEPOINT statements.

Related concepts:

v “Buffered Inserts in Partitioned Database Environments” on page 437

Related reference:

v “BIND” in the Command Reference

v “PRECOMPILE” in the Command Reference

Savepoints and Cursor Blocking

If your application uses savepoints, consider preventing cursor blocking by
precompiling or binding the application with the precompile option
BLOCKING NO. While blocking cursors can improve the performance of your

470 Programming Client Applications

application by prefetching multiple rows, the data returned by an application
that uses savepoints and blocking cursors may not reflect data that has been
committed to the database.

If you do not precompile the application using BLOCKING NO, and your
application issues a FETCH statement after a ROLLBACK TO SAVEPOINT
has occurred, the FETCH statement may retrieve deleted data. For example,
assume that the application containing the following SQL is precompiled
without the BLOCKING NO option:

CREATE TABLE t1(c1 INTEGER);
DECLARE CURSOR c1 AS 'SELECT c1 FROM t1 ORDER BY c1';
INSERT INTO t1 VALUES (1);
SAVEPOINT showFetchDelete;

INSERT INTO t1 VALUES (2);
INSERT INTO t1 VALUES (3);
OPEN CURSOR c1;
FETCH c1; --get first value and cursor block
ALTER TABLE t1... --add constraint

ROLLBACK TO SAVEPOINT;
FETCH c1; --retrieves second value from cursor block

When your application issues the first FETCH on table “t1”, the DB2® server
sends a block of column values (1, 2, and 3) to the client application. These
column values are stored locally by the client. When your application issues
the ROLLBACK TO SAVEPOINT SQL statement, column values '2' and '3' are
deleted from the table. After the ROLLBACK TO SAVEPOINT statement, the
next FETCH from the table returns column value '2', even though that value
no longer exists in the table. The application receives this value because it
takes advantage of the cursor blocking option to improve performance and
accesses the data that it has stored locally.

Related reference:

v “BIND” in the Command Reference

v “PRECOMPILE” in the Command Reference

Savepoints and XA-Compliant Transaction Managers

If there are any active savepoints in an application when an XA-compliant
transaction manager issues an XA_END request, DB2® issues a RELEASE
SAVEPOINT statement.

Transmission of Large Volumes of Data Across a Network

You can combine the techniques of stored procedures and row blocking to
significantly improve the performance of applications that need to pass large
amounts of data across a network.

Chapter 18. Common DB2 Application Techniques 471

Applications that pass arrays, large amounts of data, or packages of data
across the network can pass the data in blocks using the SQLDA data
structure or host variables as the transport mechanism. This technique is
extremely powerful in host languages that support structures.

Either a client application or a server procedure can pass the data across the
network. The data can be passed using one of the following data types:
v VARCHAR
v LONG VARCHAR
v CLOB
v BLOB

The data can also be passed using one of the following graphic types:
v VARGRAPHIC
v LONG VARGRAPHIC
v DBCLOB

Note: Be sure to consider the possibility of character conversion when using
this technique. If you are passing data with one of the character string
data types such as VARCHAR, LONG VARCHAR, or CLOB, or graphic
data types such as VARGRAPHIC, LONG VARGRAPHIC, OR
DBCLOB, and the application code page is not the same as the
database code page, any non-character data will be converted as if it
were character data. To avoid character conversion, you should pass
data in a variable with a data type of BLOB.

Related concepts:

v “Character Conversion Between Different Code Pages” on page 397
v “DB2 Stored Procedures” on page 22

Related tasks:

v “Specifying row blocking to reduce overhead” in the Administration Guide:
Performance

472 Programming Client Applications

Part 6. Appendixes

© Copyright IBM Corp. 1993-2002 473

474 Programming Client Applications

Appendix A. Supported SQL Statements

The following table:
v Lists all the supported SQL statements in DB2 Universal Database for

Linux, UNIX, and Windows operating systems
v Indicates (with an 'X') if they can be executed dynamically
v Indicates (with an 'X') if they are supported by the command line processor

(CLP)
v Indicates (with an 'X' or DB2 CLI function name) if the statement can be

executed using the DB2 Call Level Interface (DB2 CLI)
v Indicates (with an 'X') if the statement can be executed in an SQL procedure

Table 37. SQL Statements (DB2 Universal Database)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

ALLOCATE CURSOR X

assignment statement X

ASSOCIATE LOCATORS X

ALTER { BUFFERPOOL,
NICKNAME,10 NODEGROUP,
SERVER,10 TABLE,
TABLESPACE, USER
MAPPING,10 TYPE, VIEW }

X X X

BEGIN DECLARE SECTION2

CALL X9 X4 X

CASE statement X

CLOSE X SQLCloseCursor(),
SQLFreeStmt()

X

COMMENT ON X X X X

COMMIT X X SQLEndTran(), SQLTransact() X

Compound SQL (Embedded) X4

compound statement X

CONNECT (Type 1) X SQLBrowseConnect(),
SQLConnect(),
SQLDriverConnect()

© Copyright IBM Corp. 1993-2002 475

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

CONNECT (Type 2) X SQLBrowseConnect(),
SQLConnect(),
SQLDriverConnect()

CREATE { ALIAS,
BUFFERPOOL,
DISTINCT TYPE,
EVENT MONITOR,
FUNCTION, FUNCTION
MAPPING,10 INDEX, INDEX
EXTENSION, METHOD,
NICKNAME,10 NODEGROUP,
PROCEDURE, SCHEMA,
SERVER, TABLE, TABLESPACE,
TRANSFORM, TYPE
MAPPING,10 TRIGGER, USER
MAPPING,10 TYPE, VIEW,
WRAPPER10 }

X X X X11

DECLARE CURSOR2 X SQLAllocStmt() X

DECLARE GLOBAL
TEMPORARY TABLE

X X X X

DELETE X X X X

DESCRIBE8 X SQLColAttributes(),
SQLDescribeCol(),
SQLDescribParam()6

DISCONNECT X SQLDisconnect()

DROP X X X X11

END DECLARE SECTION2

EXECUTE SQLExecute() X

EXECUTE IMMEDIATE SQLExecDirect() X

EXPLAIN X X X X

FETCH X SQLExtendedFetch() ,
SQLFetch(), SQLFetchScroll()

X

FLUSH EVENT MONITOR X X X

FOR statement X

FREE LOCATOR X4 X

GET DIAGNOSTICS X

476 Programming Client Applications

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

GOTO statement X

GRANT X X X X

IF statement X

INCLUDE2

INSERT X X X X

ITERATE X

LEAVE statement X

LOCK TABLE X X X X

LOOP statement X

OPEN X SQLExecute(), SQLExecDirect() X

PREPARE SQLPrepare() X

REFRESH TABLE X X X

RELEASE X X

RELEASE SAVEPOINT X X X X

RENAME TABLE X X X

RENAME TABLESPACE X X X

REPEAT statement X

RESIGNAL statement X

RETURN statement X

REVOKE X X X

ROLLBACK X X SQLEndTran(), SQLTransact() X

SAVEPOINT X X X X

select-statement X X X X

SELECT INTO X

SET CONNECTION X SQLSetConnection()

SET CURRENT DEFAULT
TRANSFORM GROUP

X X X X

SET CURRENT DEGREE X X X X

SET CURRENT EXPLAIN
MODE

X X X, SQLSetConnectAttr() X

Appendix A. Supported SQL Statements 477

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

SET CURRENT EXPLAIN
SNAPSHOT

X X X, SQLSetConnectAttr() X

SET CURRENT PACKAGESET

SET CURRENT QUERY
OPTIMIZATION

X X X X

SET CURRENT REFRESH AGE X X X X

SET EVENT MONITOR STATE X X X X

SET INTEGRITY X X X

SET PASSTHRU10 X X X X

SET PATH X X X X

SET SCHEMA X X X X

SET SERVER OPTION10 X X X X

SET transition-variable5 X X X X

SIGNAL statement X

SIGNAL SQLSTATE5 X X X

UPDATE X X X X

VALUES INTO X

WHENEVER2

WHILE statement X

478 Programming Client Applications

Table 37. SQL Statements (DB2 Universal Database) (continued)

SQL Statement Dynamic1 Command
Line
Processor
(CLP)

Call Level Interface3 (CLI) SQL
Procedure

Notes:
1. You can code all statements in this list as static SQL, but only those marked with X as dynamic

SQL.
2. You cannot execute this statement.
3. An X indicates that you can execute this statement using either SQLExecDirect() or SQLPrepare()

and SQLExecute(). If there is an equivalent DB2 CLI function, the function name is listed.
4. Although this statement is not dynamic, with DB2 CLI you can specify this statement when calling

either SQLExecDirect(), or SQLPrepare() and SQLExecute().
5. You can only use this within CREATE TRIGGER statements.
6. You can only use the SQL DESCRIBE statement to describe output, whereas with DB2 CLI you can

also describe input (using the SQLDescribeParam() function).
7. You can only use the SQL FETCH statement to fetch one row at a time in one direction, whereas

with the DB2 CLI SQLExtendedFetch() and SQLFetchScroll() functions, you can fetch into arrays.
Furthermore, you can fetch in any direction, and at any position in the result set.

8. The DESCRIBE SQL statement has a different syntax than that of the CLP DESCRIBE command.
9. When CALL is issued through the command line processor, only certain procedures and their

respective parameters are supported.
10. Statement is supported only for federated database servers.
11. SQL procedures can only issue CREATE and DROP statements for indexes, tables, and views.

Related reference:

v “DESCRIBE statement” in the SQL Reference, Volume 2

v “CALL Statement to Install, Replace, and Remove JAR Files” in the
Application Development Guide: Programming Server Applications

Appendix A. Supported SQL Statements 479

480 Programming Client Applications

Appendix B. Programming in a Host or iSeries
Environment

Applications in Host or iSeries Environments 481
Data Definition Language in Host and
iSeries Environments. 482
Data Manipulation Language in Host and
iSeries Environments. 483
Data Control Language in Host and iSeries
Environments 484
Database Connection Management with DB2
Connect 484
Processing of Interrupt Requests 485
Package Attributes, PREP, and BIND . . . 485

Package Attribute Differences among IBM
Relational Database Systems 485
CNULREQD BIND Option for C
Null-Terminated Strings. 486
Standalone SQLCODE and SQLSTATE
Variables 487
Isolation Levels Supported by DB2
Connect 487

User-Defined Sort Orders 488
Referential Integrity Differences among IBM
Relational Database Systems 488
Locking and Application Portability. . . . 489
SQLCODE and SQLSTATE Differences
among IBM Relational Database Systems . . 489
System Catalog Differences among IBM
Relational Database Systems 490
Numeric Conversion Overflows on Retrieval
Assignments 490
Stored Procedures in Host or iSeries
Environments 490
DB2 Connect Support for Compound SQL 492
Multisite Update with DB2 Connect. . . . 492
Host and iSeries Server SQL Statements
Supported by DB2 Connect 493
Host and iSeries Server SQL Statements
Rejected by DB2 Connect 494

Applications in Host or iSeries Environments

DB2® Connect lets an application program access data in DB2 databases on
System/390, zSeries, iSeries™ servers. For example, an application running on
Windows® can access data in a DB2 Universal Database for OS/390 and z/OS
database. You can create new applications, or modify existing applications to
run in a host or iSeries environment. You can also develop applications in one
environment and port them to another.

DB2 Connect™ enables you to use the following APIs with host database
products such as DB2 Universal Database for OS/390 and z/OS, as long as
the item is supported by the host database product:
v Embedded SQL, both static and dynamic
v The DB2 Call Level Interface
v The Microsoft® ODBC API
v JDBC

Some SQL statements differ among relational database products. You may
encounter SQL statements that are:
v The same for all the database products that you use regardless of standards

© Copyright IBM Corp. 1993-2002 481

v Available in all IBM® relational database products (see your SQL reference
information for details)

v Unique to one database system that you access.

SQL statements in the first two categories are highly portable, but those in the
third category will first require changes. In general, SQL statements in Data
Definition Language (DDL) are not as portable as those in Data Manipulation
Language (DML).

DB2 Connect accepts some SQL statements that are not supported by DB2
Universal Database. DB2 Connect passes these statements on to the host or
iSeries server. For information on limits on different platforms, such as the
maximum column length, see the topic on SQL limits.

If you move a CICS® application from OS/390® or VSE to run under another
CICS product (for example, CICS for AIX), it can also access the OS/390 or
VSE database using DB2 Connect. Refer to the CICS/6000 Application
Programming Guide and the CICS Customization and Operation manual for more
details.

Note: You can use DB2 Connect with a DB2 Universal Database Version 8
database, although all you need is a DB2 client. Most of the
incompatibility issues listed in the following topics will not apply if
you are using DB2 Connect against a DB2 Universal Database Version 8
database, except in cases where a restriction is due to a limitation of
DB2 Connect itself.

Related tasks:

v “Creating the sample Database on Host or AS/400 and iSeries Servers” in
the Application Development Guide: Building and Running Applications

Related reference:

v “SQL limits” in the SQL Reference, Volume 1

Data Definition Language in Host and iSeries Environments

DDL statements differ among the IBM® database products because storage is
handled differently on different systems. On host or iSeries™ server systems,
there can be several steps between designing a database and issuing a
CREATE TABLE statement. For example, a series of statements may translate
the design of logical objects into the physical representation of those objects in
storage.

482 Programming Client Applications

The precompiler passes many such DDL statements to the host or iSeries
server when you precompile to a host or iSeries server database. The same
statements would not precompile against a database on the system where the
application is running. For example, in an Windows® application the CREATE
STORGROUP statement will precompile successfully to a DB2 Universal
Database for OS/390 and z/OS database, but not to a DB2® for Windows
database.

Data Manipulation Language in Host and iSeries Environments

In general, DML statements are highly portable. SELECT, INSERT, UPDATE,
and DELETE statements are similar across the IBM® relational database
products. Most applications primarily use DML SQL statements, which are
supported by DB2® Connect.

Following are the considerations for using DML in host and iSeries™

environments:
v Numeric data types

When numeric data is transferred to DB2 Universal Database, the data type
may change. Numeric and zoned decimal SQLTYPEs, supported by
OS/400, are converted to fixed (packed) decimal SQLTYPEs.

v Mixed-byte data
Mixed-byte data can consist of characters from an extended UNIX® code
(EUC) character set, a double-byte character set (DBCS) and a single-byte
character set (SBCS) in the same column. On systems that store data in
EBCDIC (OS/390, z/OS, OS/400, VSE, and VM), shift-out and shift-in
characters mark the start and end of double-byte data. On systems that
store data in ASCII (such as UNIX), shift-in and shift-out characters are not
required.
If your application transfers mixed-byte data from an ASCII system to an
EBCDIC system, be sure to allow enough room for the shift characters. For
each switch from SBCS to DBCS data, add 2 bytes to your data length. For
better portability, use variable-length strings in applications that use
mixed-byte data.

v Long fields
Long fields (strings longer than 254 characters) are handled differently on
different systems. A host or iSeries server may support only a subset of
scalar functions for long fields; for example, DB2 Universal Database for
OS/390 and z/OS allows only the LENGTH and SUBSTR functions for
long fields. Also, a host or iSeries server may require different handling for
certain SQL statements; for example, DB2 for VSE & VM requires that with
the INSERT statement, only a host variable, the SQLDA, or a NULL value
be used.

Appendix B. Programming in a Host or iSeries Environment 483

v Large object data type
The LOB data type is supported by DB2 Connect.

v User-defined types
Only user-defined distinct types are supported by DB2 Connect. Structured
types, also known as abstract data types, are not supported by DB2
Connect.

v ROWID data type
The ROWID data type is handled by DB2 Connect as VARCHAR for bit
data.

v BIGINT data type
Eight byte (64-bit) integers are supported by DB2 Connect. The BIGINT
internal data type is used to provide support for the cardinality of very
large databases, while retaining data precision.

Data Control Language in Host and iSeries Environments

Each IBM® relational database management system provides different levels
of granularity for the GRANT and REVOKE SQL statements. Check the
product-specific publications to verify the appropriate SQL statements to use
for each database management system.

Database Connection Management with DB2 Connect

DB2® Connect supports the CONNECT TO and CONNECT RESET versions
of the CONNECT statement, as well as CONNECT with no parameters. If an
application calls an SQL statement without first performing an explicit
CONNECT TO statement, an implicit connect is performed to the default
application server (if one is defined).

When you connect to a database, information identifying the relational
database management system is returned in the SQLERRP field of the
SQLCA. If the application server is an IBM® relational database, the first three
bytes of SQLERRP contain one of the following:

DSN DB2 Universal Database for OS/390 and z/OS

ARI DB2 for VSE & VM

QSQ DB2 UDB for iSeries™

SQL DB2 Universal Database.

484 Programming Client Applications

If you issue a CONNECT TO or null CONNECT statement while using DB2
Connect, the terrritory code or territory token in the SQLERRMC field of the
SQLCA is returned as blanks; the CCSID of the application server is returned
in the code page or code set token.

You can explicitly disconnect by using the CONNECT RESET statement (for
type 1 connect), the RELEASE and COMMIT statements (for type 2 connect),
or the DISCONNECT statement (either type of connect, but not in a TP
monitor environment).

Note: An application can receive SQLCODEs indicating errors and still end
normally; DB2 Connect™ commits the data in this case. If you do not
want the data to be committed, you must issue a ROLLBACK
command.

The FORCE command lets you disconnect selected users or all users from the
database. This is supported for host and iSeries server databases; the user can
be forced off the DB2 Connect workstation.

Related reference:

v “CONNECT (Type 1) statement” in the SQL Reference, Volume 2

v “CONNECT (Type 2) statement” in the SQL Reference, Volume 2

Processing of Interrupt Requests

DB2® Connect handles an interrupt request from a DB2 client in one of two
ways:
v If the keyword INTERRUPT_ENABLED exists in the PARMS field of the

DCS catalog entry, DB2 Connect™ will drop the connection to the host or
iSeries™ server on receipt of an interrupt request. The loss of connection, at
least on DB2 UDB for OS/390® and z/OS™ servers, will cause the current
request to be interrupted at the server.

v If the keyword INTERRUPT_ENABLED does not exist in the PARMS field
of the DCS catalog entry, interrupt requests are ignored.

Package Attributes, PREP, and BIND

The sections that follow describe differences in package attributes across IBM
relational database systems, and considerations for the PREPCOMPILE and
BIND commands.

Package Attribute Differences among IBM Relational Database Systems

A package has the following attributes:

Appendix B. Programming in a Host or iSeries Environment 485

Collection ID
The ID of the package. It can be specified on the PREP command.

Owner
The authorization ID of the package owner. It can be specified on the
PREP or BIND command.

Creator
The user name that binds the package.

Qualifier
The implicit qualifier for objects in the package. It can be specified on
the PREP or BIND command.

Each host or iSeries™ server system has limitations on the use of these
attributes:

DB2 Universal Database for OS/390 and z/OS
All four attributes can be different. The use of a different qualifier
requires special administrative privileges. For more information on the
conditions concerning the usage of these attributes, refer to the
Command Reference for DB2 Universal Database for OS/390 and z/OS.

DB2 for VSE & VM
All of the attributes must be identical. If USER1 creates a bind file
(with PREP), and USER2 performs the actual bind, USER2 needs DBA
authority to bind for USER1. Only USER1’s user name is used for the
attributes.

DB2® UDB for iSeries
The qualifier indicates the collection name. The relationship between
qualifiers and ownership affects the granting and revoking of
privileges on the object. The user name that is logged on is the creator
and owner unless it is qualified by a collection ID, in which case the
collection ID is the owner. The collection ID must already exist before
it is used as a qualifier.

DB2 Universal Database
All four attributes can be different. The use of a different owner
requires administrative authority and the binder must have
CREATEIN privilege on the schema (if it already exists).

CNULREQD BIND Option for C Null-Terminated Strings

The CNULREQD bind option overrides the handling of null-terminated
strings that are specified using the LANGLEVEL option.

By default, CNULREQD is set to YES. This causes null-terminated strings to
be interpreted according to MIA standards. If connecting to a DB2 Universal
Database for OS/390 and z/OS server, it is strongly recommended that you

486 Programming Client Applications

set CNULREQD to YES. You need to bind applications coded to SAA1
standards (with respect to null-terminated strings) with the CNULREQD
option set to NO. Otherwise, null-terminated strings will be interpreted
according to MIA standards, even if they are prepared using LANGLEVEL set
to SAA1.

Related concepts:

v “Null-Terminated Strings in C and C++” on page 188

Standalone SQLCODE and SQLSTATE Variables

Standalone SQLCODE and SQLSTATE variables, as defined in ISO/ANS
SQL92, are supported through the LANGLEVEL SQL92E precompile option.
An SQL0020W warning will be issued at precompile time, indicating that
LANGLEVEL is not supported. This warning applies only to the features
listed under LANGLEVEL MIA, which is a subset of LANGLEVEL SQL92E.

Related reference:

v “PRECOMPILE” in the Command Reference

Isolation Levels Supported by DB2 Connect

DB2 Connect accepts the following isolation levels when you prep or bind an
application:

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

NC No Commit

The isolation levels are listed in order from most protection to least protection.
If the host or iSeries™ server does not support the isolation level that you
specify, the next higher supported level is used.

The following table shows the result of each isolation level on each host or
iSeries application server.

Table 38. Isolation Levels

DB2 Connect DB2 Universal
Database for
OS/390 and z/OS

DB2 for VSE &
VM

DB2® UDB for
iSeries

DB2 Universal
Database

RR RR RR note 1 RR

RS note 2 RR COMMIT(*ALL) RS

Appendix B. Programming in a Host or iSeries Environment 487

Table 38. Isolation Levels (continued)

DB2 Connect DB2 Universal
Database for
OS/390 and z/OS

DB2 for VSE &
VM

DB2® UDB for
iSeries

DB2 Universal
Database

CS CS CS COMMIT(*CS) CS

UR note 3 CS COMMIT(*CHG) UR

NC note 4 note 5 COMMIT(*NONE) UR

Notes:

1. There is no equivalent COMMIT option on DB2 UDB for iSeries that matches RR. DB2 UDB
for iSeries support RR by locking the whole table.

2. Results in RR for Version 3.1, and results in RS for Version 4.1 with APAR PN75407 or Version
5.1.

3. Results in CS for Version 3.1, and results in UR for Version 4.1 or Version 5.1.

4. Results in CS for Version 3.1, and results in UR for Version 4.1 with APAR PN60988 or Version
5.1.

5. Isolation level NC is not supported with DB2 for VSE & VM.

With DB2 UDB for iSeries, you can access an unjournalled table if an
application is bound with an isolation level of UR and blocking set to ALL, or
if the isolation level is set to NC.

User-Defined Sort Orders

The differences between EBCDIC and ASCII cause differences in sort orders in
the various database products, and also affect ORDER BY and GROUP BY
clauses. One way to minimize these differences is to create a user-defined
collating sequence that mimics the EBCDIC sort order. You can specify a
collating sequence only when you create a new database.

Note: Database tables can now be stored on DB2 Universal Database for
OS/390 and z/OS in ASCII format. This permits faster exchange of
data between DB2 Connect and DB2 Universal Database for OS/390
and z/OS, and removes the need to provide field procedures which
must otherwise be used to convert data and resequence it.

Referential Integrity Differences among IBM Relational Database Systems

Different systems handle referential constraints differently:

DB2 Universal Database for OS/390 and z/OS
An index must be created on a primary key before a foreign key can
be created using the primary key. Tables can reference themselves.

488 Programming Client Applications

DB2 for VSE & VM
An index is automatically created for a foreign key. Tables cannot
reference themselves.

DB2® UDB for iSeries™

An index is automatically created for a foreign key. Tables can
reference themselves.

DB2 Universal Database
For DB2 Universal Database databases, an index is automatically
created for a unique constraint, including a primary key. Tables can
reference themselves.

Other rules vary concerning levels of cascade.

Locking and Application Portability

The way in which the database server performs locking can affect some
applications. For example, applications designed around row-level locking
and the isolation level of cursor stability are not directly portable to systems
that perform page-level locking. Because of these underlying differences,
applications may need to be adjusted.

The DB2 Universal Database for OS/390 and z/OS and DB2 Universal
Database products have the ability to time-out a lock and send an error return
code to waiting applications.

SQLCODE and SQLSTATE Differences among IBM Relational Database Systems

Different IBM® relational database products do not always produce the same
SQLCODEs for similar errors. You can handle this problem in either of two
ways:
v Use the SQLSTATE instead of the SQLCODE for a particular error.

SQLSTATEs have approximately the same meaning across the database
products, and the products produce SQLSTATEs that correspond to the
SQLCODEs.

v Map the SQLCODEs from one system to another system.
By default, DB2® Connect maps SQLCODEs and tokens from each IBM host
or iSeries™ server system to your DB2 Universal Database system. You can
specify your own SQLCODE mapping file if you want to override the
default mapping or you are using a database server that does not have
SQLCODE mapping (a non-IBM database server). You can also turn off
SQLCODE mapping.

Appendix B. Programming in a Host or iSeries Environment 489

Related concepts:

v “SQLCODE mapping” in the DB2 Connect User’s Guide

System Catalog Differences among IBM Relational Database Systems

The system catalogs vary across the IBM® database products. Many
differences can be masked by the use of views. For information, see the
documentation for the database server that you are using.

The catalog functions in CLI avoid this problem by presenting support of the
same API and result sets for catalog queries across the DB2® family.

Related concepts:

v “Catalog Functions for Querying System Catalog Information in CLI
Applications” in the CLI Guide and Reference, Volume 1

Numeric Conversion Overflows on Retrieval Assignments

Numeric conversion overflows on retrieval assignments may be handled
differently by different IBM® relational database products. For example,
consider fetching a float column into an integer host variable from DB2
Universal Database for OS/390 and z/OS and from DB2 Universal Database.
When converting the float value to an integer value, a conversion overflow
may occur. By default, DB2 Universal Database for OS/390 and z/OS will
return a warning SQLCODE and a null value to the application. In contrast,
DB2 Universal Database will return a conversion overflow error. It is
recommended that applications avoid numeric conversion overflows on
retrieval assignments by fetching into appropriately sized host variables.

Stored Procedures in Host or iSeries Environments

The considerations for stored procedures in host and iSeries™ environments
are as follows:
v Invocation

A client program can invoke a server program by issuing an SQL CALL
statement. Each server works a little differently to the other servers in this
case.

z/OS™ and OS/390®

The schema name must be no more than 8 bytes long, the
procedure name must be no more than 18 bytes long, and the
stored procedure must be defined in the SYSIBM.SYSPROCEDURES
catalog on the server.

490 Programming Client Applications

VSE or VM
The procedure name must not be more than 18 bytes long and must
be defined in the SYSTEM.SYSROUTINES catalog on the server.

OS/400®

The procedure name must be an SQL identifier. You can also use
the DECLARE PROCEDURE or CREATE PROCEDURE statements
to specify the actual path name (the schema-name or
collection-name) to locate the stored procedure.

All CALL statements to DB2® UDB for iSeries from REXX/SQL
must be dynamically prepared and executed by the application, as
the CALL statement implemented in REXX/SQL maps to CALL
USING DESCRIPTOR.

You can invoke the server program on DB2 Universal Database with the
same parameter convention that server programs use on DB2 Universal
Database for OS/390 and z/OS, DB2 UDB for iSeries or DB2 for VSE &
VM. For more information on the parameter convention on other platforms,
refer to the DB2 product documentation for that platform.

All the SQL statements in a stored procedure are executed as part of the
SQL unit of work started by the client SQL program.

v Do not pass indicator values with special meaning to or from stored
procedures.
Between DB2 Universal Database, the systems pass whatever you put into
the indicator variables. However, when using DB2 Connect, you can only
pass 0, -1, and -128 in the indicator variables.

v You should define a parameter to return any error or warning encountered
by the server application.
A server program on DB2 Universal Database can update the SQLCA to
return any error or warning, but a stored procedure on DB2 Universal
Database for OS/390 and z/OS or DB2 UDB for iSeries has no such
support. If you want to return an error code from your stored procedure,
you must pass it as a parameter. The SQLCODE and SQLCA is only set by
the server for system detected errors.

v DB2 for VSE & VM Version 7 or higher, DB2 Universal Database for
OS/390 and z/OS Version 5.1 or higher, DB2 for AS/400® V5R1, and DB2
for iSeries Version 7 or higher are the only host or iSeries application
servers that can return the result sets of stored procedures at this time.

Related concepts:

v “DB2 Stored Procedures” on page 22

Related reference:

Appendix B. Programming in a Host or iSeries Environment 491

v “CALL statement” in the SQL Reference, Volume 2

DB2 Connect Support for Compound SQL

Compound SQL allows multiple SQL statements to be grouped into a single
executable block. This may reduce network overhead and improve response
time.

With NOT ATOMIC compound SQL, processing of compound SQL continues
following an error. With ATOMIC compound SQL, an error rolls back the
entire group of compound SQL.

Statements will continue execution until terminated by the application server.
In general, execution of the compound SQL statement will be stopped only in
the case of serious errors.

NOT ATOMIC compound SQL can be used with all of the supported host or
iSeries™ application servers. ATOMIC compound SQL can be used with
supported host application servers.

If multiple SQL errors occur, the SQLSTATEs of the first seven failing
statements are returned in the SQLERRMC field of the SQLCA with a
message that multiple errors occurred.

Related reference:

v “SQLCA” in the Administrative API Reference

Multisite Update with DB2 Connect

DB2® Connect allows you to perform a multisite update, also known as
two-phase commit. A multisite update is an update of multiple databases
within a single distributed unit of work (DUOW). Whether you can use this
capability depends on several factors:
v Your application program must be precompiled with the CONNECT 2 and

SYNCPOINT TWOPHASE options.
v If you have SNA network connections, you can use two-phase commit

support provided by the sync point manager (SPM) function of DB2
Connect™ Enterprise Edition on AIX, and Windows® NT. This feature
enables the following host database servers to participate in a distributed
unit of work:
– DB2 for AS/400® Version 3.1 or later
– DB2 UDB for iSeries™ Version 5.1 or later
– DB2 for OS/390® Version 5.1 or later

492 Programming Client Applications

– DB2 UDB for OS/390 and z/OS™ Version 7 or later
– DB2 for VM & VSE Version V5.1 or later.

The above is true for native DB2 UDB applications and applications
coordinated by an external TP monitor such as IBM® TXSeries, CICS® for
Open Systems, BEA Tuxedo, Encina® Monitor, and Microsoft® Transaction
Server.

v If you have TCP/IP network connections, then a DB2 for OS/390 V5.1 or
later server can participate in a distributed unit of work. If the application
is controlled by a Transaction Processing Monitor such as IBM TXSeries,
CICS for Open Systems, Encina Monitor, or Microsoft Transaction Server,
then you must use SPM.
If a common DB2 Connect Enterprise Edition server is used by both native
DB2 applications and TP monitor applications to access host data over
TCP/IP connections, the sync point manager must be used.
If a single DB2 Connect Enterprise Edition server is used to access host data
using both SNA and TCP/IP network protocols and two-phase commit is
required, you must use SPM. This is true for both DB2 applications and TP
monitor applications.

Related concepts:

v “XA function supported by DB2 UDB” in the Administration Guide: Planning

v “Configuring DB2 Connect with an XA compliant transaction manager” in
the DB2 Connect User’s Guide

Related tasks:

v “Configuring BEA Tuxedo” in the Administration Guide: Planning

v “Updating host or iSeries database servers with an XA-compliant
transaction manager” in the Administration Guide: Planning

Host and iSeries Server SQL Statements Supported by DB2 Connect

The following statements compile successfully for host and iSeries™ server
processing, but not for processing with DB2 Universal Database systems:
v ACQUIRE
v DECLARE (modifier.(qualifier.)table_name TABLE ...
v LABEL ON

These statements are also supported by the command line processor.

The following statements are supported for host and iSeries server processing
but are not added to the bind file or the package and are not supported by
the command line processor:

Appendix B. Programming in a Host or iSeries Environment 493

v DESCRIBE statement_name INTO descriptor_name USING NAMES
v PREPARE statement_name INTO descriptor_name USING NAMES

FROM ...

The precompiler makes the following assumptions:
v Host variables are input variables
v The statement is assigned a unique section number.

Host and iSeries Server SQL Statements Rejected by DB2 Connect

The following SQL statements are not supported by DB2® Connect and not
supported by the command line processor:
v COMMIT WORK RELEASE
v DECLARE state_name, statement_name STATEMENT
v DESCRIBE statement_name INTO descriptor_name USING xxxx (where

xxxx is ANY, BOTH, or LABELS)
v PREPARE statement_name INTO descriptor_name USING xxxx FROM

:host_variable (where xxxx is ANY, BOTH, or LABELS)
v PUT ...
v ROLLBACK WORK RELEASE
v SET :host_variable = CURRENT ...

DB2 for VSE & VM extended dynamic SQL statements are rejected with -104
and syntax error SQLCODEs.

494 Programming Client Applications

Appendix C. Simulation of EBCDIC Binary Collation

With DB2, you can collate character strings according to a user-defined
collating sequence. You can use this feature to simulate EBCDIC binary
collation.

As an example of how to simulate EBCDIC collation, suppose you want to
create an ASCII database with code page 850, but you also want the character
strings to be collated as if the data actually resides in an EBCDIC database
with code page 500. See figures below for the definitions of code page 500
and code page 850.

Consider the relative collation of four characters in a EBCDIC code page 500
database, when they are collated in binary:

Character Code Page 500 Code Point
’a’ X'81'
’b’ X'82'
’A’ X'C1'
’B’ X'C2'

The code page 500 binary collation sequence (the desired sequence) is:
’a’ < ’b’ < ’A’ < ’B’

If you create the database with ASCII code page 850, binary collation would
yield:

Character Code Page 850 Code Point
’a’ X'61'
’b’ X'62'
’A’ X'41'
’B’ X'42'

The code page 850 binary collation (which is not the desired sequence) is:
’A’ < ’B’ < ’a’ < ’b’

To achieve the desired collation, you need to create your database with a
user-defined collating sequence. A sample collating sequence for just this
purpose is supplied with DB2® in the sqle850a.h include file. The content of
sqle850a.h is shown in the following.

© Copyright IBM Corp. 1993-2002 495

To see how to achieve code page 500 binary collation on code page 850
characters, examine the sample collating sequence in sqle_850_500. For each
code page 850 character, its weight in the collating sequence is simply its
corresponding code point in code page 500.

For example, consider the letter ‘a’. This letter is code point X'61' for code
page 850. In the array sqle_850_500, letter ‘a’ is assigned a weight of X'81'
(that is, the 98th element in the array sqle_850_500).

Consider how the four characters collate when the database is created with
the above sample user-defined collating sequence:

Character Code Page 850 Code Point / Weight (from sqle_850_500)
’a’ X'61' / X'81'
’b’ X'62' / X'82'
’A’ X'41' / X'C1'
’B’ X'42' / X'C2'

#ifndef SQL_H_SQLE850A
#define SQL_H_SQLE850A

#ifdef __cplusplus
extern "C" {
#endif

unsigned char sqle_850_500[256] = {
0x00,0x01,0x02,0x03,0x37,0x2d,0x2e,0x2f,0x16,0x05,0x25,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x3c,0x3d,0x32,0x26,0x18,0x19,0x3f,0x27,0x1c,0x1d,0x1e,0x1f,
0x40,0x4f,0x7f,0x7b,0x5b,0x6c,0x50,0x7d,0x4d,0x5d,0x5c,0x4e,0x6b,0x60,0x4b,0x61,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0x7a,0x5e,0x4c,0x7e,0x6e,0x6f,
0x7c,�0xc1�,�0xc2�,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,
0xd7,0xd8,0xd9,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0x4a,0xe0,0x5a,0x5f,0x6d,
0x79,�0x81�,�0x82�,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x91,0x92,0x93,0x94,0x95,0x96,
0x97,0x98,0x99,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xc0,0xbb,0xd0,0xa1,0x07,
0x68,0xdc,0x51,0x42,0x43,0x44,0x47,0x48,0x52,0x53,0x54,0x57,0x56,0x58,0x63,0x67,
0x71,0x9c,0x9e,0xcb,0xcc,0xcd,0xdb,0xdd,0xdf,0xec,0xfc,0x70,0xb1,0x80,0xbf,0xff,
0x45,0x55,0xce,0xde,0x49,0x69,0x9a,0x9b,0xab,0xaf,0xba,0xb8,0xb7,0xaa,0x8a,0x8b,
0x2b,0x2c,0x09,0x21,0x28,0x65,0x62,0x64,0xb4,0x38,0x31,0x34,0x33,0xb0,0xb2,0x24,
0x22,0x17,0x29,0x06,0x20,0x2a,0x46,0x66,0x1a,0x35,0x08,0x39,0x36,0x30,0x3a,0x9f,
0x8c,0xac,0x72,0x73,0x74,0x0a,0x75,0x76,0x77,0x23,0x15,0x14,0x04,0x6a,0x78,0x3b,
0xee,0x59,0xeb,0xed,0xcf,0xef,0xa0,0x8e,0xae,0xfe,0xfb,0xfd,0x8d,0xad,0xbc,0xbe,
0xca,0x8f,0x1b,0xb9,0xb6,0xb5,0xe1,0x9d,0x90,0xbd,0xb3,0xda,0xfa,0xea,0x3e,0x41
};
#ifdef __cplusplus
}
#endif

#endif /* SQL_H_SQLE850A */

Figure 9. User-Defined Collating Sequence - sqle_850_500

496 Programming Client Applications

The code page 850 user-defined collation by weight (the desired collation) is:
’a’ < ’b’ < ’A’ < ’B’

In this example, you achieve the desired collation by specifying the correct
weights to simulate the desired behavior.

Closely observing the actual collating sequence, notice that the sequence itself
is merely a conversion table, where the source code page is the code page of
the data base (850) and the target code page is the desired binary collating
code page (500). Other sample collating sequences supplied by DB2 enable
different conversions. If a conversion table that you require is not supplied
with DB2, additional conversion tables can be obtained from the IBM®

publication, Character Data Representation Architecture, Reference and Registry,
SC09-2190. You will find the additional conversion tables in a CD-ROM
enclosed with that publication.

Appendix C. Simulation of EBCDIC Binary Collation 497

HEX
DIGITS
1ST
2ND

4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-A

-B

-C

-D

-E

-F

(SP)
SP010000 SM030000

&
SP010000

-
LO610000

ø
LO620000

Ø
SM190000

˚
SM170000

µ
SC040000

¢
SM110000

{
SM140000

}
SM070000

\
ND100000

0

(RSP)
SP300000 LE110000

é
SP120000

/
LE120000

É
LA010000

a
LJ010000

j
SD190000

~
SC020000

£
LA020000

A
LJ020000

J
SA060000

÷
ND010000

1

LA150000
â

LE150000
ê

LA160000
Â

LE160000
Ê b

LB010000 LK010000
k

LS010000
s

SC050000
¥

LB020000
B

LK020000
K

LS020000
S

ND020000
2

LA170000
ä

LE170000
ë

LA180000
Ä

LE180000
Ë

LC010000
c

LL010000
l

LT010000
t

SD630000 LC020000
C

LL020000
L

LT020000
T

ND030000
3

LA130000
à

LE130000
è

LA140000
À

LE140000
È

LD010000
d

LM010000
m

LU010000
u

SM520000
©

LD020000
D

LM020000
M

LU020000
U

ND040000
4

LA110000
á

LI110000
í

LA120000
Á

LI120000
Í

LE010000
e

LN010000
n

LV010000
v

SM240000
§

LE020000
E

LN020000
N

LV020000
V

ND050000
5

LA190000
ã

LI150000
î

LA200000
Ã

LI160000
Î

LF010000
f

LO010000
o

LW010000
w

SM250000
¶

LF020000
F

LO020000
O

LW020000
W

ND060000
6

LA270000
å

LI170000
ï

LA280000
Å

LI180000
Ï

LG010000
g

LP010000
p

LX010000
x

NF040000
¼

LG020000
G

LP020000
P

LX020000
X

ND070000
7

LC410000
ç

LI130000
ì

LC420000
Ç

LI140000
Ì

LH010000
h

LQ010000
q

LY010000
y

NF010000
½

LH020000
H

LQ020000
Q

LY020000
Y

ND080000
8

LN190000
ñ

LS610000
ß

LN200000
Ñ

SD130000
`

LI010000
i

LR010000
r

LZ010000
z

NF050000
¾

LI020000
I

LR020000
R

LZ020000
Z

ND090000
9

SM060000
[

SM080000
]

SM650000
¦

SP130000
:

SP170000
«

SM210000
ª

SP030000
¡

SM660000
¬ (SHY)

SP320000 ND011000
¹

ND021000
²

ND031000
³

SP110000
.

SC030000
$

SP080000
,

SM010000
#

SP180000
»

SM200000
º

SP160000
¿

SM130000
l

LO150000
ô

LU150000
û

LO160000
Ô

LU160000
Û

SA030000
<

SM040000
*

SM020000
%

SM050000
@

LD630000
ð

LA510000
æ Ð

LD620000 SM150000
¯

LO170000
ö

LU170000
ü

LO180000
Ö

LU180000
Ü

SP060000
(

SP070000
)

SP090000
_

SP050000
'

LY110000
ý

SD410000
,

LY120000
Ý

SD170000
¨

LO130000
ò

LU130000
ù

LO140000
Ò

LU140000
Ù

SA010000
+

SP140000
;

SA050000
>

SA040000
=

LT630000
þ

LA520000
Æ

LT640000
Þ

SD110000
´ ó

LO110000 LU110000
ú

LO120000
Ó

LU120000
Ú

SP020000
!

SD150000
^

SP150000
?

SP040000
"

SA020000
±

SC010000
¤

SM530000
®

SA070000
×

LO190000
õ

LY170000
ÿ

LO200000
Õ

(EO)

Code Page 00500

¯

Figure 10. Code Page 500

498 Programming Client Applications

Related concepts:

v “Collating Sequences” on page 383

Related reference:

v “sqlecrea - Create Database” in the Administrative API Reference

HEX
DIGITS
1ST
2ND

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B-

-0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-A

-B

-C

-D

-E

-F

SM590000
(SP)

SP010000 ND100000
0

SM050000
@

LP020000
P

SD130000
`

LP010000
p

LC420000
Ç

LE120000
É

LA110000
á

SF140000

SS000000 SM630000 SP020000
!

ND010000
1

LA020000
A

LQ020000
Q

LA010000
a

LQ010000
q

LU170000
ü

LA510000
æ

LI110000
í

SF150000

SS010000 SM760000 SP040000
"

ND020000
2 B

LB020000 LR020000
R

LB010000
b

LR010000
r

LE110000
é

LA520000
Æ

LO110000
ó

SF160000

SS020000 SP330000
!!

SM010000
#

ND030000
3

LC020000
C

LS020000
S

LC010000
c

LS010000
s

LA150000
â

LO150000
ô

LU110000
ú

SF110000

SS030000 SM250000
¶

SC030000
$

ND040000
4

LD020000
D

LT020000
T

LD010000
d

LT010000
t ä

LA170000 LO170000
ö

LN190000
ñ

SF090000

SS040000 SM240000
§

SM020000
%

ND050000
5

LE020000
E

LU020000
U

LE010000
e

LU010000
u

LA130000
à

LO130000
ò

LN200000
Ñ

LA120000
Á

SS050000 SM700000 SM030000
&

ND060000
6

LF020000
F

LV020000
V

LF010000
f

LV010000
v

LA270000
å

LU150000
û

SM210000
ª

LA160000
Â

SM570000 SM770000 SP050000
'

ND070000
7

LG020000
G

LW020000
W

LG010000
g

LW010000
w

LC410000
ç

LU130000
ù

SM200000
º

LA140000
À

SM570001 SM320000 SP060000
(

ND080000
8

LH020000
H

LX020000
X

LH010000
h

LX010000
x

LE150000
ê

LY170000
ÿ

SP160000
¿

SM520000
©

SM750000 SM330000 SP070000
)

ND090000
9

LI020000
I

LY020000
Y

LI010000
i

LY010000
y

LE170000
ë

LO180000
Ö

SM530000
®

SF230000

SM750002 SM310000 SM040000
*

SP130000
:

LJ020000
J

LZ020000
Z

LJ010000
j

LZ010000
z

LE130000
è

LU180000
Ü

SM660000
¬

SF240000

SM280000 SM300000 SA010000
+

SP140000
;

LK020000
K

SM060000
[

LK010000
k

SM110000
{

LI170000
ï

LO610000
ø

NF010000
½

SF250000

SM290000 SA420000 SP080000
,

SA030000
<

LL020000
L

SM070000
\ l

LL010000 SM130000
l

LI150000
î

SC020000
£

NF040000
¼

SF260000

SM930000 SM780000 SP100000
-

SA040000
=

LM020000
M

LM080000
]

LM010000
m

SM140000
}

LI130000
ì

LO620000
Ø

SP030000
¡

SC040000
¢

SM910000 SM600000 SP110000
.

SA050000
>

LN020000
N

SD150000
^

LN010000
n

SD190000
~ Ä

LA180000 SA070000
×

SP170000
«

SC050000
¥

SM690000 SV040000 SP120000
/

SP150000
?

LO020000
O

SP090000
_

LO010000
o

SM790000 LA280000
Å

SC070000
ƒ

SP180000
»

SF030000

Code Page 00850

C- D- E- F-

SF020000 LD630000
ð

SF070000 LD620000
Ð

SF060000
Ê

LE160000

SF080000 LE180000
Ë

SF100000 LE140000
È

SF050000
1

LI610000

LA190000
ã

LI120000
Í

LA200000
Ã

LI160000
Î

SF380000 LI180000
Ï

SF390000 SF040000

SF400000 SF010000

SF410000 SF610000

SF420000 SP570000

SF430000 SM650000
¦

SF440000 LI140000
Ì

SC010000
¤

SF600000

LO120000
Ó (SHY)

SP320000

LS610000
ß

SA020000
±

LO160000
Ô

SM100000

LO140000
Ò

NF050000
¾

LO190000
õ

SM250000
¶

LO200000
Õ

SM240000
§

SM170000
µ

SA060000
÷

LT630000
þ

SD410000
,

LT640000
Þ

SM190000
˚

LU120000
Ú

SD170000
¨

LU160000
Û

SD630000

LU140000
Ù

ND011000
¹

LY110000
ý

ND031000
³

LY120000
Ý

ND021000
²

SM150000
¯

SM470000

SD110000
´ (RSP)

SP300000

¯

Figure 11. Code Page 850

Appendix C. Simulation of EBCDIC Binary Collation 499

500 Programming Client Applications

Index

Special Characters
#ifdefs

C/C restrictions 184
#include macro

C/C restrictions 166
#line macros

C/C restrictions 166

Numerics
64-bit integer (BIGINT) data type

supported by DB2 Connect 483

A
accessibility 523
ACQUIRE statement

not supported on DB2 UDB 493
ActiveX Data Object (ADO)

specification
supported in DB2 16

administration notification log
partitioned database

environments 450
ADO applications

connection string keywords 373
IBM OLE DB Provider support

for ADO methods and
properties 374

limitations 374
stored procedures 374
updatable scrollable cursors 374

APPC (Advanced
Program-to-Program
Communication)

handling interrupts 125
application design

binding 73
character conversion

considerations 393
character conversion in SQL

statements 394
character conversions in stored

procedures 395
COBOL Japanese and traditional

Chinese EUC
considerations 235

code points for special
characters 394

collating sequences,
guidelines 383

application design (continued)
concurrent users

declared temporary
tables 461

creating SQLDA structure,
guidelines 145

cursor processing 110
data object relationships 51
data value control 49
declaring sufficient SQLVAR

entities 138
describing SELECT

statement 143
double-byte character support

(DBCS) 394
dynamic SQL caching 94
dynamic SQL, purpose 127
error handling, guidelines 38
executing statements without

variables 128
include files

COBOL 214
logic at the server 54
package versions with same

name 83
passing data, guidelines 149
Perl example 332
precompiling 73
prototyping in Perl 329
pseudocode 45
receiving NULL values 101
required statements 31
retrieving data a second

time 118
REXX

registering routines 334
sample programs 121
saving end user requests 152
static SQL, advantages 94
using parameter markers 153
varying-list statements,

processing 151
Web applications 307

application environment, for
programming 30

application logic
data relationship control 54
data value control 51
server 54

application logic (continued)
stored procedures 54
triggers 54
user-defined functions 54

application performance
comparison of sequence objects

and identity columns 461
declared temporary tables 461
local bypass 437
passing blocks of data 471
sequence objects 460

application programming interface
(API)

for setting contexts between
threads

sqleAttachToCtx() 207
sqleBeginCtx() 207
sqleDetachFromCtx() 207
sqleEndCtx() 207
sqleGetCurrentCtx() 207
sqleInterruptCtx() 207
sqleSetTypeCtx() 207

overview of 48
restrictions in an XA

environment 429
syntax for REXX 349
types of 48
uses of 48

application programs
prerequisites 30
required statements 31
SQLj

example of running 282
structure 30

applications
ADO

limitations 374
updatable scrollable

cursors 374
connecting to data sources

IBM OLE DB Provider 379
DB2 programming features 20
DB2 tools for developing 5
in host iSeries environments 481
looping 452
managing transactions with

savepoints 464
MQSeries functions 19

© Copyright IBM Corp. 1993-2002 501

applications (continued)
multisite update

precompilation 423
savepoints

restrictions 468
supported by IBM OLE DB

Provider 357
supported by Java 2 Enterprise

Edition 313
supported programming

interfaces 6
suspended 452
tools for building Web

applications 17
Visual Basic

connecting to data
source 373

wrapping for Web services 309
X/Open XA Interface,

linkage 433
ARI in SQLERRP field

DB2 for VSE VM 484
ASCII

mixed-byte data 483
sort order 488

asynchronous events 207
asynchronous nature of buffered

insert 440
ATL applications

cursors
IBM OLE DB Provider 379

ATOMIC compound SQL
DB2 Connect support 492

B
BEGIN DECLARE SECTION

statement 31
BigDecimal Java data type 264
BIGINT data type

in static SQL 104
BIGINT SQL data type

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
supported by DB2 Connect 483

BINARY data types
COBOL 234

Bind API
creating packages 83
deferred binding 87

bind behavior,
DYNAMICRULES 135

BIND command
creating packages 83

BIND command (continued)
INSERT BUF option 437

bind files
backwards compatibility 86
precompile options 78
REXX 348
support to REXX

applications 348
bind options

EXPLSNAP 86
FUNCPATH 86
QUERYOPT 86

BIND PACKAGE command
rebinding 90

binding
bind file description utility,

db2bfd 87
considerations 86
deferring 87
dynamic statements 85
options 83
overview 83

blob CC type 200
BLOB data type 104

COBOL 231
conversion to C and C++ 200
FORTRAN 251
Java 264
REXX 345

BLOB FORTRAN data type 251
blob_file CC type 200
BLOB_FILE FORTRAN data

type 251
blob_locator CC type 200
BLOB_LOCATOR FORTRAN data

type 251
BLOB-FILE COBOL type 231
BLOB-LOCATOR COBOL type 231
buffered inserts

advantages 437
asynchronous 440
buffer size 437
closed state 440
considerations 440
deadlock errors 440
error detection 440
error reporting 440
group of rows 440
INSERT BUF bind option 437
long field restriction 443
not supported in CLP 443
open state 440
overview 437
partially filled 437
restrictions 443

buffered inserts (continued)
savepoint consideration 437
savepoints 470
SELECT buffered insert 440
statements that close 437
transaction logs 437
unique key violation 440

buffers
size for buffered insert 437

C
C null-terminated strings 486
C/C++ applications

compiling and linking, IBM OLE
DB Provider 378

connections to data sources, IBM
OLE DB Provider 379

multiple thread database
access 207

C/C++ data types
blob 200
blob_file 200
blob_locator 200
char 200
clob 200
clob_file 200
clob_locator 200
dbclob 200
dbclob_file 200
dbclob_locator 200
double 200
float 200
long 200
long int 200
long long 200
long long int 200
null-terminated character

form 200
short 200
short int 200
sqldbchar 200
sqlint64 200
VARCHAR structured form 200
wchart 200

C/C++ language
#include macro, restrictions 166
#line macros, restrictions 166
character set 162
Chinese (Traditional) EUC

considerations 197
class data members 191
data types for

functions 204
methods 204
stored procedures 204

502 Programming Client Applications

C/C++ language (continued)
data types supported 200
debugging 166
declaring graphic host

variables 176
embedded SQL statements 167
embedding SQL statements 71
file reference declarations 183
FOR BIT DATA 204
graphic host variables 176
handling null-terminated

strings 188
host structure support 185
host variables

declaring 171
naming 170
purpose 169

include files, required 163
indicator tables 187
indicator variables 176
initializing host variables 183
input files 162
Japanese EUC

considerations 197
LOB data declarations 179
LOB locator declarations 182
macro expansion 184
member operator, restriction 192
multi-byte character

encoding 192
output files 162
pointer to data type, declaring in

C/C 190
programming

considerations 161
qualification operator,

restriction 192
SQLCODE variables 206
sqldbchar data type 193
SQLSTATE variables 206
supported data types 200
trigraph sequences 162
wchart data type 193
WCHARTYPE precompiler

option 194
Call Level Interface (CLI)

advantages of using 157, 159
comparing embedded SQL and

DB2 CLI 155
overview 155
supported SQL statements 475

CALL statements
CALL USING

DESCRIPTOR 490
Java 281

CALL statements (continued)
supported platforms 490

cascade 488
catalog statistics

user updatable 46
char CC type 200
CHAR data type 104

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
REXX 345

character comparison 385
character conversion

character substitutions 398
coding SQL statements 394
coding stored procedures 395,

415
during precompiling and

binding 396
expansion 400
national language support

(NLS) 397
programming

considerations 393
string length overflow 415
string length overflow past data

types 415
supported code pages 399
Unicode (UCS2) 417
when executing an

application 397
when occurs 397

character host variables
C/C fixed and

null-terminated 173
C/C variable length 174
fixed and null-terminated in

C/C 173
FORTRAN 246
variable length in C/C 174

character sets
double byte 401
Extended UNIX Code

(EUC) 402
multi-byte, FORTRAN 252

CHARACTER*n FORTRAN data
type 251

Chinese (Traditional) code sets
C/C considerations 197
doublebyte considerations 406
Extended UNIX Code 406
Extended UNIX Code,

considerations 404
FORTRAN 252

Chinese (Traditional) code sets
(continued)

REXX considerations 336
UCS2, considerations 404

Chinese (traditional) EUC code sets
COBOL considerations 235

CICS applications
differences by platform 481

CICS SYNCPOINT ROLLBACK
command 429

class data members
host variables in C/C 191

class libraries
Java 261

CLASSPATH environment
variable 261

CLI (Call Level Interface)
versus embedded dynamic

SQL 155
CLI/ODBC/JDBC trace

Trace facility 285
trace files 294

client-based parameter validation
Extended UNIX Code

consideration 412
client/server

code page conversion 397
CLOB (character large object) data

type
C and C++ 200
C/C 204
CC, conversion 200
COBOL 231
FORTRAN 251
indicator variables 104
Java 264
REXX 345

CLOB FORTRAN data type 251
clob_file CC type 200
CLOB_FILE FORTRAN data

type 251
clob_locator CC type 200
CLOB_LOCATOR FORTRAN data

type 251
CLOB-FILE COBOL type 231
CLOB-LOCATOR COBOL type 231
closed state, buffered inserts 440
closing buffered insert 437
COBOL data types

BINARY 234
BLOB 231
BLOB-FILE 231
BLOB-LOCATOR 231
CLOB 231
CLOB-FILE 231

Index 503

COBOL data types (continued)
CLOB-LOCATOR 231
COMP 234
COMP-1 231
COMP-3 231
COMP-4 234
COMP-5 231
DBCLOB 231
DBCLOB-FILE 231
DBCLOB-LOCATOR 231
PICTURE (PIC) clause 231
USAGE clause 231

COBOL language
Chinese (Traditional) EUC

considerations 235
data types 231
declaring graphic host

variables 224
declaring host variables 220
embedded SQL statements 71,

217
file reference declarations 226
FOR BIT DATA 235
host structures 227
include files 214
indicator tables 229
input and output files 214
Japanese EUC

considerations 235
LOB data declarations 225
LOB locator declarations 226
naming host variables 220
no support for multiple-thread

database access 213
object-oriented restrictions 236
programming

considerations 213
REDEFINES 230
referencing host variables 219
restrictions 213
rules for indicator variables 225
SQLCODE variables 235
SQLSTATE variables 235

code pages
allocating storage for unequal

situations 408
binding considerations 86
character conversion 397
conversion

iSeries server 483
OS/390 server 483

DB2CODEPAGE registry
variable 391

for application execution 397
for precompile and bind 396

code pages (continued)
handling expansion at

application 408
handling expansion at

server 408
locales

deriving 391
national language support

(NLS) 397
SQLERRMC field of SQLCA 484
unequal situations 400, 408
Windows code pages 391

code point 383
definition 383

code sets
SQLERRMC field of SQLCA 484

collating sequence
case independent

comparisons 386
character comparisons 385
code point 383
EBCDIC and ASCII 488
EBCDIC and ASCII sort order

example 387
general concerns 383
identity sequence 383
include files

C/C 163
COBOL 214
FORTRAN 239

multi-byte characters 383
overview 383
samples 390
simulating EBCDIC binary

collation 495
sort order example 387
specifying 388
TRANSLATE function 386

collation
Chinese (Traditional) code

sets 406
Japanese code sets 406

collection ID attribute
DB2 UDB for iSeries 485
package 485

COLLECTION parameters 85
column types

creating
COBOL 231
FORTRAN 251

creating in C/C 200
columns

derived 455
generated 455
identity 456

columns (continued)
setting null values 101
supported SQL data types 104
using indicator variables on

nullable data columns 106
command line processor (CLP)

caches setting of DB2INCLUDE
environment variable 166

calling from REXX
application 349

prototyping 46
supported SQL statements 475

commands
FORCE

differences by platform 484
comments

embedded SQL statement
REXX 336

SQL, rules 167, 217, 242
COMMIT statement

association with cursor 110
ending transaction 42
ending transactions 44

COMMIT WORK RELEASE
statement

not supported in DB2
Connect 494

committing changes
tables 42

COMP data type
COBOL 234

COMP-1 in COBOL types 231
COMP-3 in COBOL types 231
COMP-4 data type

COBOL 234
COMP-5 in COBOL types 231
compiled applications, creating

packages 76
compiling

overview 81
SQLj programs

example of 282
completion codes 37
compound SQL

compared to savepoints 466
DB2 Connect support 492

concurrent transactions
potential problems 427
preventing deadlocks 428
purpose 426

configuration parameters
javaheapsz configuration

parameter 261
jdk11path configuration

parameter 261

504 Programming Client Applications

configuration parameters (continued)
locktimeout 210
multisite update 424

CONNECT RESET statement 44
CONNECT statement

sample programs 121
SQLCA.SQLERRD settings 408

connection handles
description 155

connections
CONNECT RESET

statement 484
CONNECT TO statement 484
implicit

differences by platform 484
null CONNECT 484
pooling, WebSphere 320
resource management, Java 260

consistency
of data 41

consistency token 88
containers

Java 2 Enterprise Edition 314
contexts

application dependencies
between 210

database dependencies
between 210

preventing deadlocks
between 210

setting in multithreaded DB2
applications 207

coordinator partition, without
buffered insert 437

CREATE DATABASE API
SQLEDBDESC structure 388

CREATE SEQUENCE
statement 457

creating
packages for compiled

applications 76
critical section routine, in multiple

threads 210
critical sections 210
CURRENT EXPLAIN MODE special

register
effect on dynamic bound

SQL 85
CURRENT PATH special register

effect on bound dynamic
SQL 85

CURRENT QUERY OPTIMIZATION
special register

effect on bound dynamic
SQL 85

cursor stability (CS)
host and iSeries

environments 489
cursors

ambiguous 114
ATL applications

IBM OLE DB Provider 379
behavior after ROLLBACK TO

SAVEPOINT 469
behavior with COMMIT

statement 110
blocking, savepoint

considerations 470
COMMIT considerations 110
completing unit of work 110
declaring 109
dynamic SQL, sample

program 133
FOR FETCH ONLY 114
IBM OLE DB Provider 360
multiple in application 108
naming

REXX 336
package invalidated

fetching rows 110
positioning at table end 120
processing with SQLDA

structure 145
processing, in dynamic SQL 132
processing, summary of 108
purpose 97, 108
read only

application requirements 110
READ ONLY 435
read-only 109, 114
releasing

lock behavior 110
retrieving multiple rows 108
retrieving rows 109
REXX 344
ROLLBACK considerations 110
rows

deleting 114
updating 114

sample program 115
types 114
updatable 114
updatable and scrollable in ADO

applications 374
use in CLI 155
WITH HOLD

behavior after COMMIT 110
behavior after

ROLLBACK 110

cursors (continued)
WITH HOLD (continued)

package rebound during unit
of work 110

X/Open XA Interface 429
CURVAL expression 457

D
data

accessing through Web
services 311

accessing with Microsoft
specifications 16

committing changes 42
consistency at transaction

level 41
deleting 114
expansion

iSeries server 483
OS/390 server 483

extracting large volumes 443
fetched, saving 117
inconsistent 43
partitioned database

environments 443
previously retrieved

updating 121
relationship control 51
retrieving

second time 118
with static SQL 97

scrolling 117
second retrieval 119
transmitting large volumes 471
undoing changes with

ROLLBACK statement 43
updating 114

data control language (DCL)
host and iSeries

environments 484
data definition language (DDL)

in host and iSeries
environments 482

issuing in savepoint 469
data manipulation language (DML)

host and iSeries
environments 483

data relationship control
after triggers 53
application logic 54
before triggers 53
referential integrity 52
triggers 52

data structures
declaring 31

Index 505

data structures (continued)
SQLEDBDESC 388
user-defined, with multiple

threads 209
data transfer

updating 121
data type mappings

between OLE DB and DB2 360
table of 360

data types
BINARY

COBOL 234
C/C 200
CC, conversion 200
character conversion

overflow 415
class data members, declaring in

C/C 191
CLOB in C/C 204
COBOL 231
compatibility issues 104
conversion

between DB2 and
COBOL 231

between DB2 and
FORTRAN 251

between DB2 and REXX 345
conversion between DB2 and

CC 200
data value control 49
DATALINK

host variable, restriction 251
DECIMAL

FORTRAN 251
description 32
Extended UNIX Code

consideration 414
FOR BIT DATA

COBOL 235
FOR BIT DATA in C/C 204
FORTRAN 251
host language and DB2

correspondences 104
Java 264
numeric

differences by platform 483
pointer to, declaring in C/C 190
ROWID

supported by DB2
Connect 483

selecting graphic types 193
supported 104

COBOL, rules 231
FORTRAN, rules 251

VARCHAR in C/C 204

data value control
application logic and variable

type 51
data types 49
purpose 49
referential integrity

constraints 50
table check constraints 50
unique constraints 49
views with check option 51

Database Descriptor Block
(SQLEDBDESC), specifying
collating sequences 388

database manager
defining APIs, sample

programs 121
databases

accessing
multiple threads 207

creating
collating sequence 388

using different contexts 207
DATE data type 104

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
REXX 345

DB2 Application Development
Client 355

DB2 application programming
interfaces (APIs)

overview 8
DB2 books

ordering 512
DB2 Call Level Interface (DB2 CLI)

compared to embedded dynamic
SQL 12

overview 10
DB2 Connect

isolation levels 487
processing of interrupt

requests 485
DB2 documentation search

using Netscape 4.x 520
DB2 Information Center 525
DB2 Personal Developer’s Edition 3
DB2 programming features 20
DB2 tutorials 524
DB2 Universal Developer’s

Edition 3
DB2Appl.java

application example 270
DB2ARXCS.BND REXX bind

file 348

DB2ARXNC.BND REXX bind
file 348

DB2ARXRR.BND REXX bind
file 348

DB2ARXRS.BND REXX bind
file 348

DB2ARXUR.BND REXX bind
file 348

db2bfd, bind file description
utility 87

DB2CODEPAGE registry
variable 391

DB2INCLUDE environment
variable 217, 241

command line processor caches
setting 166

DBCLOB data type
CC, conversion 200
Chinese (Traditional) code

sets 406
COBOL 231
in C and C++ 200
in static SQL programs 104
Japanese code sets 406
Java 264
REXX 345

dbclob_file CC type 200
dbclob_locator CC type 200
DBCLOB-FILE COBOL type 231
DBCLOB-LOCATOR COBOL

type 231
DBCS (double-byte character set)

Japanese and Traditional Chinese
code sets 404

DCL (data control language)
host and iSeries

environments 484
DDL (data definition language)

dynamic SQL performance 129
in host and iSeries

environments 482
deadlocks

error in buffered insert 440
in multithreaded

applications 210
preventing in concurrent

transactions 428
preventing in multiple

contexts 210
debugging

FORTRAN programs 238
Java programs 285
SQLj programs 285

DECIMAL data type
CC, conversion 200

506 Programming Client Applications

DECIMAL data type (continued)
COBOL 231
FORTRAN 251
in static SQL 104
Java 264
REXX 345

DECLARE CURSOR statement
adding to an application 40
description 109

DECLARE PROCEDURE statement
(OS/400) 490

declare section
C/C 198
COBOL 220
creating 31
FORTRAN 245, 250
in C/C 171
in COBOL 231
rules for statements 97

DECLARE statement
not supported in DB2

Connect 494
not supported on DB2 UDB 493

declared temporary tables
purpose 461
ROLLBACK statement 461

declaring
host variables, rules 97
indicator variables 101

define behavior,
DYNAMICRULES 135

derived columns
purpose 455

DESCRIBE statement 493
Extended UNIX Code

consideration 413
not supported in DB2

Connect 494
processing arbitrary

statements 150
descriptor handles

description 155
Development Center

features 23
overview 23

diagnosing suspended or looping
applications 452

disability 523
distinct types

supported by DB2 Connect 483
distributed subsection (DSS)

directed 436
distributed unit of work 419
DML (data manipulation language)

dynamic SQL performance 129

DML (data manipulation language)
(continued)

host and iSeries
environments 483

document access definition (DAD)
purpose 311

document access definition extension
(DADX) file

purpose 312
double CC type 200
DOUBLE data type 104
double Java data type 264
double-byte character sets

(DBCS) 401
Chinese (Traditional) code

sets 404
Chinese (Traditional)

considerations 406
collation considerations 406
configuration parameters 403
Japanese code sets 404
unequal code pages 408

double-byte code pages 405
DSN in SQLERRP field

DB2 UDB for OS/390 484
DSS (distributed subsection)

directed 436
dynamic SQL

arbitrary statements, processing
of 150

authorization considerations 57
caching of 94
comparing to static SQL 129
considerations 129
contrast with static SQL 93
cursor processing 132
cursors, sample program 133
DB2 Connect support 481
declaring SQLDA 138
definition 128
deleting rows 114
DESCRIBE statement 128, 137
determining arbitrary statement

type 151
effects of DYNAMICRULES 135
EXECUTE IMMEDIATE

statement 128
EXECUTE statement 128
FETCH statement 137
limitations 128
parameter markers 153
performance 129
Perl support 329
PREPARE statement 128, 137
processing cursors 145

dynamic SQL (continued)
purpose 127
supported SQL statements 475
supported statements 128
syntax rules 128

dynamic SQL statements
not supported in DB2

Connect 494
dynamic statements

binding 85
DYNAMICRULES option

effects on dynamic SQL 135

E
EBCDIC

mixed-byte data 483
sort order 488

embedded dynamic SQL 12
embedded SQL

COBOL 217
comments

COBOL 217
rules 242

comments in C/C 167
examples 71
generated columns 455
generating sequential values 457
host variable referencing 97, 101
identity columns 456
Java

example clauses 278
iterators 279

overview 9, 71
rules

C/C 167
rules for comments

C/C 167
rules, FORTRAN 242
syntax rules 71

embedded SQL for Java (SQLJ)
overview 15

END DECLARE SECTION
statement 31

ending transactions implicitly 45
Enterprise Java beans

purpose 317
environment APIs

include file
FORTRAN 239

include file for C/C 163
include file for COBOL 214

environment handles
description 155

environment variables
DB2INCLUDE 166, 241

Index 507

error handling
C/C language precompiler 166
during precompilation 78
identifying database partition

that returns error 452
include file for C/C 163
include files

C/C 163
COBOL 214
FORTRAN 239

looping applications 452
partitioned database

environment 450
partitioned database

environments 450
Perl 331
reporting 451
SQLCA structure 451
SQLCA structures

merged multiple
structures 451

SQLCODE 451
suspended applications 452
using the SQLCA 37
WHENEVER statement 38

error message codes
error handling 37

error messages
error conditions flag 123
exception condition flag 123
SQLCA structure 123
SQLSTATE 123
SQLWARN structure 123
warning condition flag 123

errors
detecting in buffered insert 440

EUC (extended UNIX code)
character sets 402
considerations 404

examples
BLOB data declarations 179
class data members in SQL

statements 191
CLOB data declarations 179
CLOB file reference 183
CLOB locator 182
DBCLOB data declarations 179
declaring BLOB file references

COBOL 226
FORTRAN 249

declaring BLOB locator
COBOL 226

declaring BLOBs
FORTRAN 248

examples (continued)
declaring BLOBs using

COBOL 225
declaring CLOB file locator

FORTRAN 249
declaring CLOBs

COBOL 225
FORTRAN 248

declaring DBCLOBs
COBOL 225

Java applets 271
parameter markers, used in

search and update 154
Perl program 332
REXX program

registering SQLEXEC,
SQLDBS and SQLDB2 334

sample SQL declare section for
supported SQL data types 198

syntax, character host variables
FORTRAN 246

exception handlers
COMMIT and ROLLBACK

consideration 125
purpose 125

EXEC SQL INCLUDE SQLCA
multithreading

considerations 209
EXEC SQL INCLUDE statement

C/C restrictions 166
EXECUTE IMMEDIATE statement

purpose 128
EXECUTE statement

purpose 128
exit routines

usage restrictions 125
expansion of data

iSeries server 483
OS/390 server 483

Explain facility
prototyping 46

explain snapshots
during bind 86

EXPLSNAP bind option 86
Extended UNIX Code (EUC)

character conversion
overflow 415

character conversions, stored
procedures 415

character sets 402
character string length

overflow 415
Chinese (Traditional)

C/C 197
COBOL consideration 235

Extended UNIX Code (EUC)
(continued)

Chinese (Traditional) (continued)
FORTRAN 252

Chinese (Traditional) code
sets 404

Chinese (Traditional)
considerations 406

Chinese (Traditional) in
REXX 336

client-based parameter
validation 412

considerations for collation 406
DBCLOB files 406
DESCRIBE statement 413
double-byte code pages 405
expansion at application 408
expansion at server 408
expansion samples 412
fixed-length data types 414
graphic constants 406
graphic data handling 406
Japanese

C/C 197
FORTRAN 252

Japanese and traditional Chinese
COBOL consideration 235

Japanese code sets 404
Japanese in REXX 336
mixed code pages 405
stored procedures 406
UDF (user-defined function)

considerations 406
unequal code pages 408
variable-length data types 414

Extensible Markup Language (XML)
basis for Web services 307
description 19

extracting large volumes of
data 443

F
FETCH statement

host variables 137
repeated data access 117
SQLDA structure 144

file reference declarations in
REXX 343

files
reference declarations in

C/C 183
FIPS 127-2 standard 48

declaring SQLSTATE and
SQLCODE as host
variables 123

508 Programming Client Applications

flagger utility
use in precompiling 80

float CC type 200
FLOAT data type 104

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
REXX 345

flushed buffered inserts 437
FOR BIT DATA data type

C/C 204
FOR UPDATE clause 114
FORCE command

differences by operating
system 484

foreign keys
differences by platform 488

FORTRAN data types
BLOB 251
BLOB_FILE 251
BLOB_LOCATOR 251
CHARACTER*n 251
CLOB 251
CLOB_FILE 251
CLOB_LOCATOR 251
conversion with DB2 251
INTEGER*2 251
INTEGER*4 251
REAL*2 251
REAL*4 251
REAL*8 251

FORTRAN language
Chinese (Traditional)

considerations 252
comment lines 238
conditional lines 238
data types 251
debugging 238
embedding SQL 242
embedding SQL statements 71
file reference declarations 249
host variables

declaring 245
naming 244
purpose 244
referencing 242

include files 239
including files 241
indicator variables 247
input and output files 238
Japanese considerations 252
LOB data declarations 248
LOB locator declarations 249
locating include files 241

FORTRAN language (continued)
multi-byte character sets 252
no planned enhancements 30
no support for multiple-thread

database access 238
precompiling 238
programming

considerations 237
restrictions 238
SQL declare section 250
SQLCODE variables 253
SQLSTATE variables 253

fullselect
buffered insert

consideration 443
FUNCPATH bind option 86

G
generated columns

purpose 455
GET ERROR MESSAGE API 339

error message retrieval 126
graphic constants

Chinese (Traditional) code
sets 406

Japanese code sets 406
graphic data

Chinese (Traditional) code
sets 404, 406

Japanese code sets 404, 406
GRAPHIC data type

CC, conversion 200
COBOL 231
FORTRAN, not supported 251
Java 264
REXX 345
selecting 193

graphic host variables
C/C 177
COBOL 224

GRAPHIC space 394
graphic strings

character conversion 400
GROUP BY clause

sort order 488
group of rows in buffered

insert 440

H
handles

connection 155
descriptor 155
environment 155
statement 155

host and iSeries environments
application considerations 481
C null-terminated strings 486
cursor stability 489
data control language

(DCL) 484
data definition language

(DDL) 482
data manipulation language

(DML) 483
DB2 Connect

isolation levels 487
differences in SQLCODEs and

SQLSTATEs 489
page-level locking 489
processing of interrupt

requests 485
row-level locking 489
standalone SQLCODE and

SQLSTATE 487
stored procedures 490
system catalogs 490

host language
embedding SQL statements 71

host structure
COBOL 227

host structure support
C/C 185

host variables
class data members in C/C 191
COBOL data types 231
DATALINK restriction 251
declaring

C/C 171
COBOL 220
examples 99
FORTRAN 245
rules 97
sample programs 121
using variable list

statement 151
declaring as pointer to data

type 190
declaring graphic

COBOL 224
declaring LOB locator

COBOL 226
defining for use with

columns 36
definition 97
file reference declarations

COBOL 226
FORTRAN 249
REXX 343

Index 509

host variables (continued)
file reference declarations in

C/C 183
FORTRAN 244
graphic

FORTRAN 252
graphic data 176
graphic data declarations

C/C 176
in dynamic SQL 128
in host language statement 97
in SQL statement 97
initializing in C/C 183
LOB

clearing in REXX 344
LOB data declarations

C/C 179
COBOL 225
REXX 341

LOB declarations
FORTRAN 248

LOB locator declarations
C/C 182
FORTRAN 249
REXX 342

multi-byte character
encoding 192

naming
C/C 170
COBOL 220
FORTRAN 244
REXX 339

null-terminated strings, handling
in C/C 188

passing blocks of data 471
precompiler considers as global

to a module in C/C 170
purpose 169
referencing

C/C 169
COBOL 219
FORTRAN 242
REXX 339

referencing from SQL 97, 101
relating to SQL statement 36
REXX

purpose 338
selecting graphic data types 193
SQLj 263
static SQL 97
truncation 101
unsupported in Perl 330
WCHARTYPE precompiler

option 194

hosts
accessing host servers 426

HTML page
tagging for Java applets 271

I
IBM DB2 Universal Database Project

Add-In for Microsoft Visual C
activating 67
purpose 64

IBM DB2 Universal Database Tools
Add-In for Microsoft Visual C 68

IBM OLE DB Provider
ADO applications 373
ATL applications

cursors 379
automatic enablement of OLE DB

services 359
C/C applications

connections to data
sources 379

compiling and linking C/C
applications 378

connecting Visual Basic
applications to data source 373

connections to data sources 372
consumer 355
cursors 360
cursors in ADO applications 374
data conversion

from DB2 types to OLE DB
types 364

data conversion from OLE DB to
DB2 types 362

enabling MTS support in
DB2 380

for DB2
installing 355

limitations for ADO
applications 374

LOBs 357
MTS and COM distributed

transaction support 380
OLE DB support 366
provider 355
restrictions 366
schema rowsets 357
support for ADO methods and

properties 374
supported application types 357
supported OLE DB

properties 369
threading 357

identity columns
comparison with sequence

objects 461
purpose 456

identity sequence 383
implicit connections

differences by platform 484
include files

locating
in C/C 166
in COBOL 217
in FORTRAN 241

requirements
C/C 163
COBOL 214
FORTRAN 239

SQL
for C/C 163
for COBOL 214
for FORTRAN 239

SQL1252A
COBOL 214
FORTRAN 239

SQL1252B
COBOL 214
FORTRAN 239

SQLADEF for C/C 163
SQLAPREP

for C/C 163
for COBOL 214
for FORTRAN 239

SQLCA
for C/C 163
for COBOL 214
for FORTRAN 239

SQLCA_92
COBOL 214
FORTRAN 239

SQLCACN
FORTRAN 239

SQLCACS
FORTRAN 239

SQLCLI for C/C 163
SQLCLI1 for C/C 163
SQLCODES

for C/C 163
for COBOL 214
for FORTRAN 239

SQLDA
COBOL 214
for C/C 163
for FORTRAN 239

SQLDACT
FORTRAN 239

510 Programming Client Applications

include files (continued)
SQLE819A

for C/C 163
for COBOL 214
for FORTRAN 239

SQLE819B
for C/C 163
for COBOL 214
for FORTRAN 239

SQLE850A
for C/C 163
for COBOL 214
for FORTRAN 239

SQLE850B
for C/C 163
for COBOL 214
for FORTRAN 239

SQLE932A
for C/C 163
for COBOL 214
for FORTRAN 239

SQLE932B
for C/C 163
for COBOL 214
for FORTRAN 239

SQLEAU
for C/C 163
for COBOL 214
for FORTRAN 239

SQLENV
COBOL 214
for C/C 163
FORTRAN 239

SQLETSD
COBOL 214

SQLEXT for C/C 163
SQLJACB for C/C 163
SQLMON

COBOL 214
for C/C 163
FORTRAN 239

SQLMONCT
for COBOL 214

SQLSTATE
for C/C 163
for COBOL 214
for FORTRAN 239

SQLSYSTM for C/C 163
SQLUDF for C/C 163
SQLUTBCQ

COBOL 214
SQLUTBSQ

COBOL 214
SQLUTIL

for C/C 163

include files (continued)
SQLUTIL (continued)

for COBOL 214
for FORTRAN 239

SQLUV for C/C 163
SQLUVEND for C/C 163
SQLXA for C/C 163

INCLUDE SQLCA statement
pseudocode 37

INCLUDE SQLDA statement 40
creating SQLDA structure 145

INCLUDE statement 40
inconsistent

data 43
states 43

indicator tables
C and C 187
COBOL support 229

indicator variables
C/C 176
COBOL 225
declaring 101
during INSERT or UPDATE 101
FORTRAN 247
purpose 101
REXX 339
truncation 101
using on nullable columns 106

input and output files
COBOL 214
FORTRAN 238

input file extensions for C/C 162
input files for C/C 162
INSERT BUF bind option

buffered inserts 437
INSERT statement

not supported in CLP 443
VALUES clause 437

inserts, without buffered insert 437
Int Java data type 264
INTEGER data type 104

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
REXX 345

integer data type, 64-bit
supported by DB2 Connect 483

INTEGER*2 FORTRAN data
type 251

INTEGER*4 FORTRAN data
type 251

interrupt handlers
COMMIT and ROLLBACK

consideration 125

interrupt handlers (continued)
purpose 125

interrupt handling with SQL
statements 125

interrupts, SIGUSR1 125
invoke behavior,

DYNAMICRULES 135
iSeries environment

accessing host servers 426
ISO

10646 standard 404
2022 standard 404

ISO/ANS SQL92 standard
definition 48
support 487

isolation levels
repeatable read (RR) 117
supported platforms 487

J
Japanese and traditional Chinese

EUC code sets
COBOL considerations 235

Japanese code sets
C/C considerations 197
Extended UNIX Code,

considerations 404
FORTRAN 252
REXX 336
UCS2, considerations 404

Java
applets

distributing and running 271
support 267
support with type 4

driver 266
applications

support with type 2
driver 266

support with type 4
driver 266

class files, where to place 261
class libraries 261
CLASSPATH environment

variable 261
comparisons

SQLj with JDBC 258
with other languages 259

DB2 support 265
db2java.zip file considerations for

applets 271
debugging 285
distributing and running

applications 270
embedding SQL statements 71

Index 511

Java (continued)
Enterprise Java beans 317
javaheapsz configuration

parameter 261
JDBC

example program 269
specification 268

jdk11path configuration
parameter 261

output files 261
overview 257
packages 263
packages and classes 268
packages and classes,

COM.ibm.db2.app 264
security 259
source files 261
SQLCODE 304
SQLj (Embedded SQL for Java)

applets 277
calling stored procedures 281
declaring cursors 279
declaring iterators 279
embedded SQL

statments 278
example clauses 278
example program 280
host variables 263
iterators 279
overview 275
positioned DELETE

statement 279
positioned UPDATE

statement 279
restrictions 277
specification 268

SQLMSG 304
SQLSTATE 304
updating classes 263

Java 2 Enterprise Edition
application support 313
containers 314
Enterprise Java beans 317
overview 313
requirements 315
server 315
transaction management 316

Java data types
BigDecimal 264
Blob 264
Double 264
Int 264
java.math.BigDecimal 264
Short 264
String 264

Java database connectivity (JDBC)
overview 14

Java naming and directory interface
(JNDI) 315

Java transaction API (JTA) 316
Java transaction service (JTS) 316
java.math.BigDecimal Java data

type 264
javaheapsz configuration

parameter 261
JDBC

coding applications and
applets 268

COM.ibm.db2.jdbc
.app.DB2Driver 268

COM.ibm.db2.jdbc
.net.DB2Driver 268

comparison with SQLj 258
connection resource

management 260
drivers 272
example program 269
overview 14
session sharing with SQLj 258
SQLj interoperability 258

JDBC 2.1 core API
type 2 driver restrictions 272

JDBC 2.1 core API restrictions
type 4 driver 273

JDBC 2.1 Optional Package API
type 4 driver support 275

JDBC Optional Package API
type 2 driver support 273

jdk11path configuration
parameter 261

JNDI (Java naming and directory
interface) 315

JTA (Java transaction API) 316
JTS (Java transaction service) 316

K
keys

foreign
differences by platform 488

primary 488

L
LABEL ON statement, not

supported 493
LANGLEVEL precompile option

MIA 200
SAA1 200
SQL92E and SQLSTATE or

SQLCODE variables 206, 235,
253, 487

large objects (LOBs)
application considerations 24

latches, status with multiple
threads 207

linking
description 81

LOB (large object) data types
data declarations in C/C++ 179
IBM OLE DB Provider 357
locator declarations in

C/C++ 182
supported by DB2 Connect 483

local
bypass 437

locales
deriving in application

programs 391
how DB2 derives 392

locating include files,
FORTRAN 241

locking
buffered insert error 440

locks
page-level 489
releasing cursor 110
row-level 489
timeout 489

locktimeout configuration
parameter 210

long C/C++ type 200
long fields

buffered inserts, restriction 443
differences by platform 483

long int C/C++ type 200
long long C/C++ type 200
long long int C/C++ type 200
LONG VARCHAR data type

C/C++, conversion 200
COBOL 231
FORTRAN 251
in static SQL programs 104
Java 264
REXX 345

LONG VARGRAPHIC data type
C/C++, conversion 200
COBOL 231
FORTRAN 251
in static SQL programs 104
Java 264
REXX 345

M
member operator, C/C

restriction 192

512 Programming Client Applications

memory
allocation for unequal code

pages 408
message files

definition 78
methods

overview 22
MIA LANGLEVEL precompile

option 200
Microsoft OLE DB Provider for

ODBC
OLE DB support 366

Microsoft specifications
accessing data 16
ADO (ActiveX Data Object) 16
MTS (Microsoft Transaction

Server) 16
RDO (Remote Data Object) 16
Visual Basic 16
Visual C 16

Microsoft Transaction Server
specification

accessing data 16
Microsoft Visual C

IBM DB2 Universal Database
Project Add-In 64

mixed code page environments
package names 396

mixed Extended UNIX Code
considerations 405

mixed-byte data
iSeries server 483
OS/390 server 483

model for DB2 programming 45
MQSeries

support for applications 19
MTS and COM distributed

transaction support
IBM OLE DB Provider 380

MTS support
enabling in DB2 380

multi-byte character support
code points for special

characters 394
multi-byte code pages

Chinese (Traditional) code
sets 404

Japanese code sets 404
multi-byte considerations

Chinese (Traditional) code sets
C/C 197
FORTRAN 252
REXX 336

multi-byte considerations (continued)
Japanese and traditional Chinese

EUC code sets
COBOL 235

Japanese code sets
C/C 197
FORTRAN 252
REXX 336

multisite updates
configuration parameters 424
DB2 Connect support 492
overview 419
precompiling applications 423
purpose 420
SQL statements in multisite

update applications 421

N
national language support (NLS)

character conversion 397
code page 397
mixed-byte data 483

Net.Data
overview 20

NEXTVAL expression 457
NOLINEMACRO, PREP option 166
non-executable SQL statements

DECLARE CURSOR 40
INCLUDE 40
INCLUDE SQLDA 40

NOT ATOMIC compound SQL
DB2 Connect support 492

NULL value
indicator variable to receive

NULL value 101
null-terminated character form CC

type 200
null-terminated strings

CNULREQD BIND option 486
null-terminator

variable-length graphic data,
processing 200

numeric conversion overflows 490
NUMERIC data type

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
REXX 345

numeric data types
differences by platform 483

numeric host variables
C/C 172
COBOL 221
FORTRAN 245

O
object-oriented COBOL

restrictions 236
ODBC (open database connectivity)

application development
tools 17

OLE automation routines 26
OLE DB

BLOB support 366
Command support 366
component and interface

support 366
connections to data sources using

IBM OLE DB Provider 372
data conversion

from DB2 to OLE DB
types 364

from OLE DB to DB2
types 362

data type mappings with
DB2 360

RowSet support 366
services automatically

enabled 359
Session support 366
supported in DB2 16
supported properties 369
table functions

overview 26
View Objects support 366

OLE DB table functions 355
online

help, accessing 512
open state, buffered inserts 440
optimizer

static and dynamic SQL
considerations 129

ORDER BY clause
sort order 488

ordering DB2 books 512
output file extensions

C/C++ 162
output files

C/C++ 162
overflows, numeric 490

P
package names

mixed code page
environments 396

packages
attributes, by platform 485
creating 76, 83
description 88
inoperative 90

Index 513

packages (continued)
invalid

state 90
rebound during unit of work

cursor behavior 110
REXX application support 348
timestamp errors 88
versions with same name 83
versions, privileges 83

page-level locking
host and iSeries

environments 489
parameter markers

in processing arbitrary
statements 151

Perl 331
programming example 154
SQLVAR entries 153
typed 153
use in dynamic SQL 153
use in SQLExecDirect 155

partitioned database environments
buffered inserts

considerations 440
purpose 437
restrictions 443

distributed subsections,
directed 436

error handling 450
extracting large volume of

data 443
identifying partition that returns

error 452
local bypass 437
optimizing OLTP

applications 435
READ ONLY cursors 435
severe errors 450
suspended or looping

application 452
test environment, creating 449

passing contexts between
threads 207

performance
buffered inserts 437
distributed subsections,

directed 436
dynamic SQL 94, 129
factors affecting, static SQL 93
FOR UPDATE clause 114
identity columns 456
optimizing with packages 88
precompiling static SQL

statements 88
read-only cursors 114, 435

performance (continued)
releasing locks 110
static SQL 94

Perl
application example 332
connecting to database 330
Database Interface (DBI)

specification 17
drivers 329
no support for multiple-thread

database access 329
parameter markers 331
programming

considerations 329
restrictions 329
returning data 330
SQLCODEs 331
SQLSTATEs 331

PICTURE (PIC) clause in COBOL
types 231

portability when using CLI instead
of embedded SQL 157

precompiler
C/C character set 162
C/C language 192
C/C language debugging 166
C/C trigraph sequences 162
COBOL 213
FORTRAN 237
LANGLEVEL SQL92E

option 487
options 78
output types 78
overview 71
section number 493

precompiling 80
accessing host or AS/400

application server through DB2
Connect 80

accessing multiple servers 80
consistency token 88
example 78
flagger utility 80
FORTRAN 238
overview 78
supporting dynamic SQL

statements 128
timestamps 88
updatable cursor option 114

PREP command (PRECOMPILE)
description 78
example 78

PREP option, NOLINEMACRO 166

PREPARE statement
not supported in DB2

Connect 494
processing arbitrary

statements 150
purpose 128

preprocessor functions
and the SQL precompiler 184

primary keys
differences by platform 488

printed books, ordering 512
programming considerations

accessing host, AS/400, or iSeries
servers 426

C/C++ 161
COBOL 213
environments 30
FORTRAN 237
interfaces supported 6
pseudocode framework 45
REXX 333
variable types, data value

control 51
X/Open XA interface 429

properties
OLE DB properties

supported 369
prototyping SQL code 46
PUT statement, not supported in

DB2 Connect 494

Q
QSQ in SQLERRP field for

iSeries 484
qualification and member operators

in C/C++ 192
queries

deletable 114
updatable 114
Web services 311

QUERYOPT bind option 86

R
REAL data type

CC, conversion 200
COBOL 231
FORTRAN 251
Java 264
list 104
REXX 345

REAL*2 FORTRAN data type 251
REAL*4 FORTRAN data type 251
REAL*8 FORTRAN data type 251
rebinding

description 90

514 Programming Client Applications

rebinding (continued)
REBIND PACKAGE

command 90
REDEFINES, COBOL 230
referential constraints

data value control 50
referential integrity

data relationship
consideration 52

differences by platform 488
RELEASE SAVEPOINT

statement 468
releasing connections, CMS

applications 42
Remote Data Object (RDO)

specification
supported in DB2 16

remote unit of work
purpose 419

REORGANIZE TABLE command
mixed code pages 405

repeatable read (RR)
method 117

reporting errors 451
restrictions

buffered inserts 443
COBOL 213
FORTRAN 238
in C/C 184
REXX 334

result codes 37
RESULT REXX predefined

variable 339
retrieval assignments

numeric conversion
overflows 490

retrieving data
Perl 330
static SQL 97

return codes
declaring the SQLCA 37
SQLCA structure 123

REXX applications 347
REXX data types 345
REXX language

API syntax 349
APIs

SQLDB2 333
SQLDBS 333
SQLEXEC 333

bind files 348
calling the DB2 CLP 349
Chinese (Traditional) 336
cursor identifiers 336
cursors 344

REXX language (continued)
data requirements

client 352
server 352

data types 345
embedding SQL statements 336
host variables

naming 339
purpose 338
referencing 339

indicator variables 339
initializing variables 350
Japanese 336
LOB data 341
LOB file reference

declarations 343
LOB host variables, clearing 344
LOB locator declarations 342
no support for multiple-thread

database access 335
predefined variables 339
programming

considerations 333, 334
registering routines 334
registering SQLEXEC, SQLDBS

and SQLDB2 334
restrictions 334
running applications 347
SQL statements 336
SQLDA decimal fields

retrieving data 353
stored procedures

calling 351
overview 350

ROLLBACK statement
association with cursor 110
backing out changes 43
differences by platform 484
ending transactions 44
rolling back changes 43

ROLLBACK TO SAVEPOINT
statement

cursor behavior 469
ROLLBACK WORK RELEASE

statement
not supported in DB2

Connect 494
rolling back changes 43
routines

OLE automation, overview 26
row blocking

customizing for
performance 471

row-level locking
host and iSeries

environments 489
ROWID data type

supported by DB2 Connect 483
rows

fetching after package
invalidated 110

positioning in table 120
retrieving multiple 108
retrieving using SQLDA 144
retrieving with cursor 114
second retrieval

methods 118
row order 119

run behavior,
DYNAMICRULES 135

run-time services
multiple threads

effect on latches 207
RUOW

see remote unit of work 419

S
SAA1 LANGLEVEL precompile

option 200
SAVEPOINT statement

controlling transactions 468
savepoints

atomic compound SQL 468
buffered inserts 437, 470
compared to compound

SQL 466
controlling 468
creating 468
cursor blocking

considerations 470
data definition language

(DDL) 469
nested 468
restrictions 468
SET INTEGRITY statement 468
transaction management 464
triggers 468
XA transaction managers 471

schema rowsets
IBM OLE DB Provider 357

security
Java 259

SELECT statement
association with EXECUTE

statement 128
buffered inserts 440
DECLARE CURSOR

statement 109

Index 515

SELECT statement (continued)
declaring an SQLDA 138
describing after allocating

SQLDA 143
retrieving

data a second time 118
multiple rows 108

updating retrieved data 121
varying-list 151

semaphores 210
sequence objects

application performance 460
behavior, controlling 459
comparison with identity

columns 461
purpose 457

sequential values
generating 457

serialization
data structures 209
SQL statement execution 207

session sharing, SQLj and
JDBC 258

SET CURRENT PACKAGESET
statement 85

SET CURRENT statement, not
supported in DB2 Connect 494

severe errors, partitioned database
environments 450

shift-out characters, differences by
platform 483

short C/C++ type 200
short int C/C++ type 200
short Java data type 264
signal handlers

COMMIT and ROLLBACK
considerations 125

installing, sample programs 121
purpose 125
with SQL statements 125

SIGUSR1 interrupt 125
simple object access protocol

(SOAP), XML messages in SOAP
envelopes 309

SMALLINT data type
C/C++, conversion 200
COBOL 231
CREATE TABLE statement 104
FORTRAN 251
Java 264
REXX 345

sorting
collating sequence 388, 488
ordering of results 488

source files
creating 73

sources
embedded SQL applications 80
file name extensions 78
modified source files 78
SQL file extensions 73

special registers
CURRENT EXPLAIN MODE 85
CURRENT PATH 85
CURRENT QUERY

OPTIMIZATION 85
SQL (Structured Query Language)

authorization
APIs 58
dynamic SQL 57
embedded SQL 55
static SQL 58

dynamically prepared 155
SQL communications area

(SQLCA) 37
SQL data types

BIGINT 104
BLOB 104
CHAR 104
CLOB 104
COBOL 231
conversion to CC 200
DATE 104
DBCLOB 104
DECIMAL 104
FLOAT 104
FORTRAN 251
INTEGER 104
Java 264
LONG VARCHAR 104
LONG VARGRAPHIC 104
REAL 104
REXX 345
SMALLINT 104
TIME 104
TIMESTAMP 104
VARCHAR 104
VARGRAPHIC 104

SQL include file
C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQL objects
representing with variables 33

SQL procedural language 475
SQL queries, Web services 311
SQL statement execution

serialization 207

SQL statements
C/C syntax 167
COBOL syntax 217
exception handlers 125
FORTRAN syntax 242
idxterm>CONNECT

SQLCA.SQLERRD
settings 408

interrupt handlers 125
multisite upate applications 421
REXX 336
REXX syntax 336
saving end user requests 152
signal handlers 125

SQL_WCHART_CONVERT
preprocessor macro 194

SQL1252A include file
COBOL applications 214
FORTRAN applications 239

SQL1252B include file
COBOL applications 214
FORTRAN applications 239

SQL92 standard
support 487

SQLADEF include file
C/C applications 163

SQLAPREP include file
C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLCA (SQL communication area)
error reporting in buffered

insert 440
incomplete insert when error

occurs 440
multithreading

considerations 209
SQLERRMC field 484, 492
SQLERRP field identifies

RDBMS 484
SQLCA include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLCA predefined variable 339
SQLCA structure

defining, sample programs 121
include file for C/C 163
include files

COBOL applications 214
FORTRAN applications 239

merged multiple structures 451
multiple definitions 38
overview 123

516 Programming Client Applications

SQLCA structure (continued)
partitioned database

environments
merged multiple SQLCA

structures 451
reporting errors 451
requirements 123
SQLCODE field 123
sqlerrd 451
SQLSTATE field 123
SQLWARN1 field 101
token truncation 124
warnings 101

SQLCA_92 include file
COBOL applications 214
FORTRAN applications 239

SQLCA_92 structure 239
SQLCA_CN include file 239
SQLCA_CS include file 239
SQLCA.SQLERRD settings on

CONNECT 408
SQLCHAR structure

passing data with 149
SQLCLI include file 163
SQLCLI1 include file 163
SQLCODE

error codes 37
field, SQLCA structure 123
including SQLCA 37
Java programs 304
platform differences 489
reporting errors 451
standalone 487
structure 123

SQLCODE -1015
partitioned database

environments 450
SQLCODE -1034

partitioned database
environments 450

SQLCODE -30081
partitioned database

environments 450
SQLCODES include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLDA (SQL descriptor area)
multithreading

considerations 209
SQLDA include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLDA structure
association with PREPARE

statement 128
creating 145
declaring 138
declaring sufficient SQLVAR

entities 142
determining arbitrary statement

type 151
passing blocks of data 471
passing data 149
placing information about

prepared statement into 128
preparing statements using

minimum structure 140
SQLDACT include file 239
SQLDB2 REXX API 333, 349
SQLDB2 routine, registering for

REXX 334
sqldbchar data type

equivalent column type 200
selecting 193

SQLDBS REXX API 333
SQLDBS routine, registering for

REXX 334
SQLE819A include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLE819B include file
C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLE850A include file
COBOL applications 214
FORTRAN applications 239

SQLE850B include file
COBOL applications 214
FORTRAN applications 239

SQLE859A include file
C/C applications 163

SQLE859B include file
C/C applications 163

SQLE932A include file
C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLE932B include file
C/C applications 163
COBOL applications 214
FORTRAN applications 239

sqleAttachToCtx() API 207
SQLEAU include file

C/C applications 163
COBOL applications 214

SQLEAU include file (continued)
FORTRAN applications 239

sqleBeginCtx() API 207
sqleDetachFromCtx() API 207
sqleEndCtx() API 207
sqleGetCurrentCtx() API 207
sqleInterruptCtx() API 207
SQLENV include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLERRD(1) 400, 408
SQLERRD(2) 400, 408
SQLERRD(3) 429
SQLERRMC field of SQLCA 400,

484, 492
SQLERRP field of SQLCA 484
sqleSetTypeCtx() API 207
SQLETSD include file 214
SQLException

handling 126
retrieving SQLCODE 304
retrieving SQLMSG 304
retrieving SQLSTATE 304

SQLEXEC REXX API
embedded SQL 333
processing SQL statements 336
registering 334

SQLEXT include file
CLI applications 163

sqlint64 CC type 200
SQLISL predefined variable 339
SQLj (embedded SQL for Java)

applets
restrictions 277

applications
examples 282

clauses, examples 278
cursors, declaring 279
DELETE statement,

positioned 279
embedded SQL statements 278
host variables 263
iterators 279
Java Database Connectivity

(JDBC) comparison 258
Java Database Connectivity

(JDBC) interoperability 258
overview 275
programs

example 280
restrictions 277
stored procedures

calling 281

Index 517

SQLj (embedded SQL for Java)
(continued)

UPDATE statement,
positioned 279

SQLj (Embedded SQL for Java)
session sharing with JDBC 258
translator options 284

SQLJACB include file
C/C applications 163

SQLMON include file
COBOL applications 214
for C/C applications 163
FORTRAN applications 239

SQLMONCT include file 214
SQLMSG predefined variable 339
SQLMSG value in Java 304
SQLRDAT predefined variable 339
SQLRIDA predefined variable 339
SQLRODA predefined variable 339
SQLSTATE

differences 489
in CLI 155
Java programs 304
standalone 487

SQLSTATE field 123
SQLSTATE include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLSYSTM include file 163
SQLUDF include file

C/C applications 163
SQLUTBCQ include file 214
SQLUTBSQ include file 214
SQLUTIL include file

C/C applications 163
COBOL applications 214
FORTRAN applications 239

SQLUV include file
C/C applications 163

SQLUVEND include file 163
SQLVAR entities

declaring sufficient number 142
variable number, declaring 138

SQLWARN structure 123
SQLXA include file

C/C applications 163
statement handles

description 155
statements

ACQUIRE, not supported on DB2
UDB 493

BEGIN DECLARE SECTION 31
caching, WebSphere 326

statements (continued)
CALL USING

DESCRIPTOR 490
CALL, supported platforms 490
COMMIT 42
COMMIT WORK RELEASE 494
CONNECT 484
CREATE SEQUENCE 457
DB2 Connect

not supported 494
supported 493

DECLARE CURSOR 40
DECLARE, not supported on

DB2 UDB 493, 494
DESCRIBE 493, 494
END DECLARE SECTION 31
INCLUDE 40
INCLUDE SQLCA 37
INCLUDE SQLDA 40
LABEL ON, not supported on

DB2 UDB 493
preparing using minumum

SQLDA structure 140
RELEASE SAVEPOINT 468
ROLLBACK

declared temporary
tables 461

differences by platform 484
ending transactions 43

ROLLBACK TO
SAVEPOINT 468

SAVEPOINT 468
static SQL

considerations 129
DB2 Connect support 481
dynamic SQL

comparison 129
contrast 93

overview 93
performance 94
Perl, unsupported 329
precompiling, advantages 88
retrieving data 97
sample cursor program 112
sample program 95
static update programming

example 121
using host variables 97

storage
allocating to hold rows 144
allocation for unequal code

pages 408
declaring sufficient SQLVAR

entities 138

stored procedures
application logic

consideration 54
calling

REXX 351
SQLj 281

character conversion 395
character conversion, EUC 415
Chinese (Traditional) code

sets 406
initializing

REXX variables 350
Japanese code sets 406
overview 22
REXX applications 350
supported platforms 490

String Java data type 264
strings

null-terminated, C, CNULREQD
BIND option 486

Structured Query Language (SQL)
supported statements

Call Level Interface
(CLI) 475

Command Line Processor
(CLP) 475

dynamic SQL 475
SQL procedural

language 475
structured types

not supported by DB2
Connect 483

success codes 37
symbols

substitutions, C/C++ language
restrictions 184

syntax
character host variables 174
declare section

C/C++ 171
COBOL 220
FORTRAN 245

embedded SQL statements
avoiding line breaks 167
C/C++ 167
COBOL 217
comments, C/C++ 167
comments, COBOL 217
comments, FORTRAN 242
comments, REXX 336
FORTRAN 242
substitution of white space

characters 167
embedding SQL statements

REXX 336

518 Programming Client Applications

syntax (continued)
LOB indicator declarations,

REXX 342
SYSIBM.SYSPROCEDURES catalog

(OS/390) 490
SYSIBM.SYSROUTINES catalog

(VM/VSE) 490
system catalog views

prototyping utility 46
system catalogs

host and iSeries
environments 490

system requirements
IBM 0LE DB Provider for

DB2 355

T
table check constraints

data value control 50
tables

committing changes 42
declared temporary

creating in savepoint 469
creating outside

savepoint 469
fetching rows, example 115
generated columns 455
identity columns 456
names, resolving unqualified 85
not logged initially, creating in

savepoint 469
positioning cursor at end 120
resolving unqualified names 85
self-referencing 488
temporary, declared 461

target
partitions, behavior without

buffered insert 437
temporary tables

declared 461
territory codes

SQLERRMC field of SQLCA 484
territory, SQLERRMC field of

SQLCA 484
test environments

partitioned databases 449
test tables, creating 60
test views, creating 60
threads

IBM OLE DB Provider 357
IBM OLE DB Provider for

DB2 355
multiple

application dependencies
between contexts 210

threads (continued)
multiple (continued)

code page considerations 209
country/region code page

considerations 209
database dependencies

between contexts 210
potential problems 210
preventing deadlocks between

contexts 210
recommendations 209
UNIX application

considerations 209
using in DB2

applications 207
TIME data type

C/C++, conversion 200
COBOL 231
FORTRAN 251
in CREATE TABLE

statement 104
Java 264
REXX 345

TIMESTAMP data type
C/C++, conversion 200
COBOL 231
description 104
FORTRAN 251
Java 264
REXX 345

timestamps
when precompiling 88

tokens
truncation, SQLCA structure 124

tools
for application development 5

traces
CLI/ODBC/JDBC 285

transaction logs, buffered
inserts 437

transaction processing monitors
X/Open XA Interface 429

transactions
coding 41
committing work 42
concurent

potential problems 427
preventing deadlocks 428
purpose 426

data consistency 41
ending

COMMIT statement 44
CONNECT RESET

statemetn 44
ROLLBACK statement 44

transactions (continued)
ending implicitly 45
savepoints 464
undoing changes with

ROLLBACK statement 43
transmitting large volumes of

data 471
triggers

after updates 53
application logic

consideration 54
before updates 53
data relationship control 52
overview 27

trigraph sequences, C/C++ 162
troubleshooting

DB2 documentation search 520
online information 522

truncation
host variables 101
indicator variables 101

tutorials 524
two-phase commit

updating
multiple databases 419

type 2 JDBC driver
JDBC 2.1 core API

restrictions 272
JDBC 2.1 Optional Package API

support 273
type 4 JDBC driver

JDBC 2.1 core API
restrictions 273

JDBC 2.1 Optional Package API
support 275

typed parameter marker 153

U
UCS-2 404
UDFs (user-defined functions)

calling
SQLj 281

unequal code pages 408
allocating storage 408

Unicode (UCS-2)
Chinese (Traditional) code

sets 404
Japanese code sets 404
UDF (user-defined function)

considerations 406
Unicode (UCS2)

character conversion 417
character conversion

overflow 415

Index 519

unique constraints
data value control 49

unique key violation, buffered
inserts 440

unit of work 41
completing

cursor behavior 110
cursor considerations 110
remote 419

USAGE clause in COBOL types 231
user defined types (UDTs)

supported by DB2 Connect 483
user updatable

catalog statistics
prototyping utility 46

user-defined collating
sequence 488, 495

user-defined functions (UDFs)
application logic

consideration 54
Chinese (Traditional) code

sets 406
Japanese code sets 406
overview 22

user-defined methods
calling, SQLJ 281

user-defined types (UDTs)
application considerations 24

utility APIs
include file

FORTRAN applications 239
include file for C/C

applications 163
include files

COBOL applications 214

V
VARCHAR data type

C or C++ 204
C/C++, conversion 200
COBOL 231
FORTRAN 251
in table columns 104
Java 264
REXX 345
structured form, C/C++ 200

VARGRAPHIC data type
C/C++ 200
C/C++, conversion 200
COBOL 231
FORTRAN 251
Java 264
list 104
REXX 345

variables
declaring 31
interacting with database

manager 32
representing SQL objects 33
REXX, predefined 339
SQLCODE 206, 235, 253
SQLSTATE 206, 235, 253

version levels
IBM OLE DB Provider for

DB2 355
views

data value control 51
system catalogs 490

Visual Basic
applications

connecting to data
source 373

cursor considerations 374
data control support 374
supported in DB2 16

Visual C
IBM DB2 Universal Database

Project Add-In 64
supported in DB2 16

W
warning messages

truncation 101
wchar_t data type

selecting 193
WCHARTYPE

data types available with
NOCONVERT option 200

guidelines 194
precompile option 194

Web applications
tools for building 17
Web services 307

Web services
accessing DB2 data 311
architecture 309
defining operations 312
document access definition 311
document access definition

extension (DADX) file 312
infrastructure based on

XML 307
purpose 307, 309
security 309
SQL-based query 311
XML-based query 311

Web services description language
(WSDL) 309

Web services flow language
(WSFL) 309

WebSphere
accessing enterprise data 319
connection pooling

benefits 325
purpose 320
tuning 321

data sources 320
statement caching 326

WebSphere Studio 18
weight, definition 383
WHENEVER statement

error handling 38
Windows

code pages 391
DB2CODEPAGE registry

variable 391

X
X/Open XA Interface

API restrictions 429
application linkage 433
CICS environment 429
COMMIT statement 429
cursors declared WITH

HOLD 429
DISCONNECT 429
multithreaded application 429
purpose 429
RELEASE not supported 429
ROLLBACK statement 429
savepoints 471
single-threaded application 429
SQL CONNECT 429
transaction processing

characteristics 429
transactions 429
XA environment 429
XASerialize 429

XML
accessing wrapped

application 309
document access definition 311
infrastructure for Web

services 307
queries 311
Web services description

language (WSDL) 309
XML messages in SOAP

envelopes 309
XML Extender

overview 19

520 Programming Client Applications

DB2 Universal Database technical information

Overview of DB2 Universal Database technical information

DB2 Universal Database technical information can be obtained in the
following formats:
v Books (PDF and hard-copy formats)
v A topic tree (HTML format)
v Help for DB2 tools (HTML format)
v Sample programs (HTML format)
v Command line help
v Tutorials

This section is an overview of the technical information that is provided and
how you can access it.

Categories of DB2 technical information
The DB2 technical information is categorized by the following headings:
v Core DB2 information
v Administration information
v Application development information
v Business intelligence information
v DB2 Connect information
v Getting started information
v Tutorial information
v Optional component information
v Release notes

The following tables describe, for each book in the DB2 library, the
information needed to order the hard copy, print or view the PDF, or locate
the HTML directory for that book. A full description of each of the books in
the DB2 library is available from the IBM Publications Center at
www.ibm.com/shop/publications/order

The installation directory for the HTML documentation CD differs for each
category of information:
htmlcdpath/doc/htmlcd/%L/category

where:

© Copyright IBM Corp. 1993-2002 521

http://www.ibm.com/shop/publications/order

v htmlcdpath is the directory where the HTML CD is installed.
v %L is the language identifier. For example, en_US.
v category is the category identifier. For example, core for the core DB2

information.

In the PDF file name column in the following tables, the character in the sixth
position of the file name indicates the language version of a book. For
example, the file name db2d1e80 identifies the English version of the
Administration Guide: Planning and the file name db2d1g80 identifies the
German version of the same book. The following letters are used in the sixth
position of the file name to indicate the language version:

Language Identifier
Arabic w
Brazilian Portuguese b
Bulgarian u
Croatian 9
Czech x
Danish d
Dutch q
English e
Finnish y
French f
German g
Greek a
Hungarian h
Italian i
Japanese j
Korean k
Norwegian n
Polish p
Portuguese v
Romanian 8
Russian r
Simp. Chinese c
Slovakian 7
Slovenian l
Spanish z
Swedish s
Trad. Chinese t
Turkish m

No form number indicates that the book is only available online and does not
have a printed version.

522 Programming Client Applications

Core DB2 information
The information in this category cover DB2 topics that are fundamental to all
DB2 users. You will find the information in this category useful whether you
are a programmer, a database administrator, or you work with DB2 Connect,
DB2 Warehouse Manager, or other DB2 products.

The installation directory for this category is doc/htmlcd/%L/core.

Table 39. Core DB2 information

Name Form Number PDF File Name

IBM DB2 Universal Database
Command Reference

SC09-4828 db2n0x80

IBM DB2 Universal Database
Glossary

No form number db2t0x80

IBM DB2 Universal Database
Master Index

SC09-4839 db2w0x80

IBM DB2 Universal Database
Message Reference, Volume 1

GC09-4840 db2m1x80

IBM DB2 Universal Database
Message Reference, Volume 2

GC09-4841 db2m2x80

IBM DB2 Universal Database
What’s New

SC09-4848 db2q0x80

Administration information
The information in this category covers those topics required to effectively
design, implement, and maintain DB2 databases, data warehouses, and
federated systems.

The installation directory for this category is doc/htmlcd/%L/admin.

Table 40. Administration information

Name Form number PDF file name

IBM DB2 Universal Database
Administration Guide:
Planning

SC09-4822 db2d1x80

IBM DB2 Universal Database
Administration Guide:
Implementation

SC09-4820 db2d2x80

IBM DB2 Universal Database
Administration Guide:
Performance

SC09-4821 db2d3x80

IBM DB2 Universal Database
Administrative API Reference

SC09-4824 db2b0x80

DB2 Universal Database technical information 523

Table 40. Administration information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Data Movement Utilities Guide
and Reference

SC09-4830 db2dmx80

IBM DB2 Universal Database
Data Recovery and High
Availability Guide and
Reference

SC09-4831 db2hax80

IBM DB2 Universal Database
Data Warehouse Center
Administration Guide

SC27-1123 db2ddx80

IBM DB2 Universal Database
Federated Systems Guide

GC27-1224 db2fpx80

IBM DB2 Universal Database
Guide to GUI Tools for
Administration and
Development

SC09-4851 db2atx80

IBM DB2 Universal Database
Replication Guide and Reference

SC27-1121 db2e0x80

IBM DB2 Installing and
Administering a Satellite
Environment

GC09-4823 db2dsx80

IBM DB2 Universal Database
SQL Reference, Volume 1

SC09-4844 db2s1x80

IBM DB2 Universal Database
SQL Reference, Volume 2

SC09-4845 db2s2x80

IBM DB2 Universal Database
System Monitor Guide and
Reference

SC09-4847 db2f0x80

Application development information
The information in this category is of special interest to application developers
or programmers working with DB2. You will find information about
supported languages and compilers, as well as the documentation required to
access DB2 using the various supported programming interfaces, such as
embedded SQL, ODBC, JDBC, SQLj, and CLI. If you view this information
online in HTML you can also access a set of DB2 sample programs in HTML.

524 Programming Client Applications

The installation directory for this category is doc/htmlcd/%L/ad.

Table 41. Application development information

Name Form number PDF file name

IBM DB2 Universal Database
Application Development
Guide: Building and Running
Applications

SC09-4825 db2axx80

IBM DB2 Universal Database
Application Development
Guide: Programming Client
Applications

SC09-4826 db2a1x80

IBM DB2 Universal Database
Application Development
Guide: Programming Server
Applications

SC09-4827 db2a2x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 1

SC09-4849 db2l1x80

IBM DB2 Universal Database
Call Level Interface Guide and
Reference, Volume 2

SC09-4850 db2l2x80

IBM DB2 Universal Database
Data Warehouse Center
Application Integration Guide

SC27-1124 db2adx80

IBM DB2 XML Extender
Administration and
Programming

SC27-1234 db2sxx80

Business intelligence information
The information in this category describes how to use components that
enhance the data warehousing and analytical capabilities of DB2 Universal
Database.

The installation directory for this category is doc/htmlcd/%L/wareh.

Table 42. Business intelligence information

Name Form number PDF file name

IBM DB2 Warehouse Manager
Information Catalog Center
Administration Guide

SC27-1125 db2dix80

IBM DB2 Warehouse Manager
Installation Guide

GC27-1122 db2idx80

DB2 Universal Database technical information 525

DB2 Connect information
The information in this category describes how to access host or iSeries data
using DB2 Connect Enterprise Edition or DB2 Connect Personal Edition.

The installation directory for this category is doc/htmlcd/%L/conn.

Table 43. DB2 Connect information

Name Form number PDF file name

APPC, CPI-C, and SNA Sense
Codes

No form number db2apx80

IBM Connectivity Supplement No form number db2h1x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Enterprise Edition

GC09-4833 db2c6x80

IBM DB2 Connect Quick
Beginnings for DB2 Connect
Personal Edition

GC09-4834 db2c1x80

IBM DB2 Connect User’s
Guide

SC09-4835 db2c0x80

Getting started information
The information in this category is useful when you are installing and
configuring servers, clients, and other DB2 products.

The installation directory for this category is doc/htmlcd/%L/start.

Table 44. Getting started information

Name Form number PDF file name

IBM DB2 Universal Database
Quick Beginnings for DB2
Clients

GC09-4832 db2itx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Servers

GC09-4836 db2isx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Personal Edition

GC09-4838 db2i1x80

IBM DB2 Universal Database
Installation and Configuration
Supplement

GC09-4837 db2iyx80

IBM DB2 Universal Database
Quick Beginnings for DB2
Data Links Manager

GC09-4829 db2z6x80

526 Programming Client Applications

Tutorial information
Tutorial information introduces DB2 features and teaches how to perform
various tasks.

The installation directory for this category is doc/htmlcd/%L/tutr.

Table 45. Tutorial information

Name Form number PDF file name

Business Intelligence Tutorial:
Introduction to the Data
Warehouse

No form number db2tux80

Business Intelligence Tutorial:
Extended Lessons in Data
Warehousing

No form number db2tax80

Development Center Tutorial
for Video Online using
Microsoft Visual Basic

No form number db2tdx80

Information Catalog Center
Tutorial

No form number db2aix80

Video Central for e-business
Tutorial

No form number db2twx80

Visual Explain Tutorial No form number db2tvx80

Optional component information
The information in this category describes how to work with optional DB2
components.

The installation directory for this category is doc/htmlcd/%L/opt.

Table 46. Optional component information

Name Form number PDF file name

IBM DB2 Life Sciences Data
Connect Planning, Installation,
and Configuration Guide

GC27-1235 db2lsx80

IBM DB2 Spatial Extender
User’s Guide and Reference

SC27-1226 db2sbx80

IBM DB2 Universal Database
Data Links Manager
Administration Guide and
Reference

SC27-1221 db2z0x80

DB2 Universal Database technical information 527

Table 46. Optional component information (continued)

Name Form number PDF file name

IBM DB2 Universal Database
Net Search Extender
Administration and
Programming Guide
Note: HTML for this
document is not installed
from the HTML
documentation CD.

SH12-6740 N/A

Release notes
The release notes provide additional information specific to your product’s
release and FixPak level. They also provides summaries of the documentation
updates incorporated in each release and FixPak.

Table 47. Release notes

Name Form number PDF file name HTML directory

DB2 Release Notes See note. See note. doc/prodcd/%L/db2ir

where %L is the
language identifier.

DB2 Connect Release
Notes

See note. See note. doc/prodcd/%L/db2cr

where %L is the
language identifier.

DB2 Installation Notes Available on
product CD-ROM
only.

Available on
product CD-ROM
only.

Note: The HTML version of the release notes is available from the
Information Center and on the product CD-ROMs. To view the ASCII
file:
v On UNIX-based platforms, see the Release.Notes file. This file is

located in the DB2DIR/Readme/%L directory, where %L represents
the locale name and DB2DIR represents:
– /usr/opt/db2_08_01 on AIX
– /opt/IBM/db2/V8.1 on all other UNIX operating systems

v On other platforms, see the RELEASE.TXT file. This file is located in
the directory where the product is installed.

Related tasks:

v “Printing DB2 books from PDF files” on page 529

528 Programming Client Applications

v “Ordering printed DB2 books” on page 530
v “Accessing online help” on page 530
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 534
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 535

Printing DB2 books from PDF files

You can print DB2 books from the PDF files on the DB2 PDF Documentation
CD. Using Adobe Acrobat Reader, you can print either the entire book or a
specific range of pages.

Prerequisites:

Ensure that you have Adobe Acrobat Reader. It is available from the Adobe
Web site at www.adobe.com

Procedure:

To print a DB2 book from a PDF file:
1. Insert the DB2 PDF Documentation CD. On UNIX operating systems,

mount the DB2 PDF Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start Adobe Acrobat Reader.
3. Open the PDF file from one of the following locations:

v On Windows operating systems:
x:\doc\language directory, where x represents the CD-ROM drive letter
and language represents the two-character territory code that represents
your language (for example, EN for English).

v On UNIX operating systems:
/cdrom/doc/%L directory on the CD-ROM, where /cdrom represents the
mount point of the CD-ROM and %L represents the name of the desired
locale.

Related tasks:

v “Ordering printed DB2 books” on page 530
v “Finding product information by accessing the DB2 Information Center

from the administration tools” on page 534
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 535

Related reference:

DB2 Universal Database technical information 529

http://www.adobe.com/

v “Overview of DB2 Universal Database technical information” on page 521

Ordering printed DB2 books

Procedure:

To order printed books:
v Contact your IBM authorized dealer or marketing representative. To find a

local IBM representative, check the IBM Worldwide Directory of Contacts at
www.ibm.com/shop/planetwide

v Phone 1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.
v Visit the IBM Publications Center at

www.ibm.com/shop/publications/order

Related tasks:

v “Printing DB2 books from PDF files” on page 529
v “Finding topics by accessing the DB2 Information Center from a browser”

on page 532
v “Viewing technical documentation online directly from the DB2 HTML

Documentation CD” on page 535

Related reference:

v “Overview of DB2 Universal Database technical information” on page 521

Accessing online help

The online help that comes with all DB2 components is available in three
types:
v Window and notebook help
v Command line help
v SQL statement help

Window and notebook help explain the tasks that you can perform in a
window or notebook and describe the controls. This help has two types:
v Help accessible from the Help button
v Infopops

The Help button gives you access to overview and prerequisite information.
The infopops describe the controls in the window or notebook. Window and
notebook help are available from DB2 centers and components that have user
interfaces.

530 Programming Client Applications

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order

Command line help includes Command help and Message help. Command
help explains the syntax of commands in the command line processor.
Message help describes the cause of an error message and describes any
action you should take in response to the error.

SQL statement help includes SQL help and SQLSTATE help. DB2 returns an
SQLSTATE value for conditions that could be the result of an SQL statement.
SQLSTATE help explains the syntax of SQL statements (SQL states and class
codes).

Note: SQL help is not available for UNIX operating systems.

Procedure:

To access online help:
v For window and notebook help, click Help or click that control, then click

F1. If the Automatically display infopops check box on the General page
of the Tool Settings notebook is selected, you can also see the infopop for a
particular control by holding the mouse cursor over the control.

v For command line help, open the command line processor and enter:
– For Command help:

? command

where command represents a keyword or the entire command.

For example, ? catalog displays help for all the CATALOG commands,
while ? catalog database displays help for the CATALOG DATABASE
command.

v For Message help:
? XXXnnnnn

where XXXnnnnn represents a valid message identifier.

For example, ? SQL30081 displays help about the SQL30081 message.
v For SQL statement help, open the command line processor and enter:

– For SQL help:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code
represents the first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, while ? 08
displays help for the 08 class code.

– For SQLSTATE help:

DB2 Universal Database technical information 531

help statement

where statement represents an SQL statement.

For example, help SELECT displays help about the SELECT statement.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 532

v “Viewing technical documentation online directly from the DB2 HTML
Documentation CD” on page 535

Finding topics by accessing the DB2 Information Center from a browser

The DB2 Information Center accessed from a browser enables you to access
the information you need to take full advantage of DB2 Universal Database
and DB2 Connect. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, metadata,
Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser is composed of the
following major elements:

Navigation tree
The navigation tree is located in the left frame of the browser window.
The tree expands and collapses to show and hide topics, the glossary,
and the master index in the DB2 Information Center.

Navigation toolbar
The navigation toolbar is located in the top right frame of the browser
window. The navigation toolbar contains buttons that enable you to
search the DB2 Information Center, hide the navigation tree, and find
the currently displayed topic in the navigation tree.

Content frame
The content frame is located in the bottom right frame of the browser
window. The content frame displays topics from the DB2 Information
Center when you click on a link in the navigation tree, click on a
search result, or follow a link from another topic or from the master
index.

Prerequisites:

To access the DB2 Information Center from a browser, you must use one of
the following browsers:
v Microsoft Explorer, version 5 or later
v Netscape Navigator, version 6.1 or later

532 Programming Client Applications

Restrictions:

The DB2 Information Center contains only those sets of topics that you chose
to install from the DB2 HTML Documentation CD. If your Web browser returns
a File not found error when you try to follow a link to a topic, you must
install one or more additional sets of topics DB2 HTML Documentation CD.

Procedure:

To find a topic by searching with keywords:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

To find a topic in the navigation tree:
1. In the navigation tree, click the book icon of the category of topics related

to your area of interest. A list of subcategories displays underneath the
icon.

2. Continue to click the book icons until you find the category containing
the topics in which you are interested. Categories that link to topics
display the category title as an underscored link when you move the
cursor over the category title. The navigation tree identifies topics with a
page icon.

3. Click the topic link. The topic displays in the content frame.

To find a topic or term in the master index:
1. In the navigation tree, click the “Index” category. The category expands to

display a list of links arranged in alphabetical order in the navigation tree.
2. In the navigation tree, click the link corresponding to the first character of

the term relating to the topic in which you are interested. A list of terms
with that initial character displays in the content frame. Terms that have
multiple index entries are identified by a book icon.

3. Click the book icon corresponding to the term in which you are
interested. A list of subterms and topics displays below the term you
clicked. Topics are identified by page icons with an underscored title.

4. Click on the title of the topic that meets your needs. The topic displays in
the content frame.

DB2 Universal Database technical information 533

Related concepts:

v “Accessibility” on page 541
v “DB2 Information Center for topics” on page 543

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 534

v “Updating the HTML documentation installed on your machine” on page
536

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
538

v “Searching the DB2 documentation” on page 539

Related reference:

v “Overview of DB2 Universal Database technical information” on page 521

Finding product information by accessing the DB2 Information Center from the
administration tools

The DB2 Information Center provides quick access to DB2 product
information and is available on all operating systems for which the DB2
administration tools are available.

The DB2 Information Center accessed from the tools provides six types of
information.

Tasks Key tasks you can perform using DB2.

Concepts
Key concepts for DB2.

Reference
DB2 reference information, such as keywords, commands, and APIs.

Troubleshooting
Error messages and information to help you with common DB2
problems.

Samples
Links to HTML listings of the sample programs provided with DB2.

Tutorials
Instructional aid designed to help you learn a DB2 feature.

Prerequisites:

534 Programming Client Applications

Some links in the DB2 Information Center point to Web sites on the Internet.
To display the content for these links, you will first have to connect to the
Internet.

Procedure:

To find product information by accessing the DB2 Information Center from
the tools:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Click the tab of the information type related to the information you are

attempting to find.
3. Navigate through the tree and click on the topic in which you are

interested. The Information Center will then launch a Web browser to
display the information.

4. To find information without browsing the lists, click the Search icon to the
right of the list.
Once the Information Center has launched a browser to display the
information, you can perform a full-text search by clicking the Search icon
in the navigation toolbar.

Related concepts:

v “Accessibility” on page 541
v “DB2 Information Center for topics” on page 543

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 532

v “Searching the DB2 documentation” on page 539

Viewing technical documentation online directly from the DB2 HTML
Documentation CD

All of the HTML topics that you can install from the DB2 HTML
Documentation CD can also be read directly from the CD. Therefore, you can
view the documentation without having to install it.

Restrictions:

DB2 Universal Database technical information 535

Because the following items are installed from the DB2 product CD and not
the DB2 HTML Documentation CD, you must install the DB2 product to view
these items:
v Tools help
v DB2 Quick Tour
v Release notes

Procedure:

1. Insert the DB2 HTML Documentation CD. On UNIX operating systems,
mount the DB2 HTML Documentation CD. Refer to your Quick Beginnings
book for details on how to mount a CD on UNIX operating systems.

2. Start your HTML browser and open the appropriate file:
v For Windows operating systems:

e:\Program Files\sqllib\doc\htmlcd\%L\index.htm

where e represents the CD-ROM drive, and %L is the locale of the
documentation that you wish to use, for example, en_US for English.

v For UNIX operating systems:
/cdrom/Program Files/sqllib/doc/htmlcd/%L/index.htm

where /cdrom/ represents where the CD is mounted, and %L is the locale
of the documentation that you wish to use, for example, en_US for
English.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 532

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 538

Related reference:

v “Overview of DB2 Universal Database technical information” on page 521

Updating the HTML documentation installed on your machine

It is now possible to update the HTML installed from the DB2 HTML
Documentation CD when updates are made available from IBM. This can be
done in one of two ways:
v Using the Information Center (if you have the DB2 administration GUI

tools installed).
v By downloading and applying a DB2 HTML documentation FixPak .

536 Programming Client Applications

Note: This will NOT update the DB2 code; it will only update the HTML
documentation installed from the DB2 HTML Documentation CD.

Procedure:

To use the Information Center to update your local documentation:
1. Start the DB2 Information Center in one of the following ways:

v From the graphical administration tools, click on the Information
Center icon in the toolbar. You can also select it from the Help menu.

v At the command line, enter db2ic.
2. Ensure your machine has access to the external Internet; the updater will

download the latest documentation FixPak from the IBM server if
required.

3. Select Information Center —> Update Local Documentation from the
menu to start the update.

4. Supply your proxy information (if required) to connect to the external
Internet.

The Information Center will download and apply the latest documentation
FixPak, if one is available.

To manually download and apply the documentation FixPak :
1. Ensure your machine is connected to the Internet.
2. Open the DB2 support page in your Web browser at:

www.ibm.com/software/data/db2/udb/winos2unix/support
3. Follow the link for version 8 and look for the ″Documentation FixPaks″

link.
4. Determine if the version of your local documentation is out of date by

comparing the documentation FixPak level to the documentation level you
have installed. This current documentation on your machine is at the
following level: DB2 v8.1 GA.

5. If there is a more recent version of the documentation available then
download the FixPak applicable to your operating system. There is one
FixPak for all Windows platforms, and one FixPak for all UNIX platforms.

6. Apply the FixPak:
v For Windows operating systems: The documentation FixPak is a self

extracting zip file. Place the downloaded documentation FixPak in an
empty directory, and run it. It will create a setup command which you
can run to install the documentation FixPak.

v For UNIX operating systems: The documentation FixPak is a
compressed tar.Z file. Uncompress and untar the file. It will create a
directory named delta_install with a script called installdocfix. Run
this script to install the documentation FixPak.

DB2 Universal Database technical information 537

Related tasks:

v “Copying files from the DB2 HTML Documentation CD to a Web Server”
on page 538

Related reference:

v “Overview of DB2 Universal Database technical information” on page 521

Copying files from the DB2 HTML Documentation CD to a Web Server

The entire DB2 information library is delivered to you on the DB2 HTML
Documentation CD, so you can install the library on a Web server for easier
access. Simply copy to your Web server the documentation for the languages
that you want.

Procedure:

To copy files from the DB2 HTML Documentation CD to a Web server, use the
appropriate path:
v For Windows operating systems:

E:\Program Files\sqllib\doc\htmlcd\%L*.*

where E represents the CD-ROM drive and %L represents the language
identifier.

v For UNIX operating systems:
/cdrom:Program Files/sqllib/doc/htmlcd/%L/*.*

where cdrom represents the CD-ROM drive and %L represents the language
identifier.

Related tasks:

v “Searching the DB2 documentation” on page 539

Related reference:

v “Supported DB2 interface languages, locales, and code pages” in the Quick
Beginnings for DB2 Servers

v “Overview of DB2 Universal Database technical information” on page 521

Troubleshooting DB2 documentation search with Netscape 4.x

Most search problems are related to the Java support provided by web
browsers. This task describes possible workarounds.

Procedure:

538 Programming Client Applications

A common problem with Netscape 4.x involves a missing or misplaced
security class. Try the following workaround, especially if you see the
following line in the browser Java console:
Cannot find class java/security/InvalidParameterException

v On Windows operating systems:
From the DB2 HTML Documentation CD, copy the supplied x:Program
Files\sqllib\doc\htmlcd\locale\InvalidParameterException.class file to
the java\classes\java\security\ directory relative to your Netscape
browser installation, where x represents the CD-ROM drive letter and locale
represents the name of the desired locale.

Note: You may have to create the java\security\ subdirectory structure.
v On UNIX operating systems:

From the DB2 HTML Documentation CD, copy the supplied /cdrom/Program
Files/sqllib/doc/htmlcd/locale/InvalidParameterException.class file to
the java/classes/java/security/ directory relative to your Netscape
browser installation, where cdrom represents the mount point of the
CD-ROM and locale represents the name of the desired locale.

Note: You may have to create the java/security/ subdirectory structure.

If your Netscape browser still fails to display the search input window, try the
following:
v Stop all instances of Netscape browsers to ensure that there is no Netscape

code running on the machine. Then open a new instance of the Netscape
browser and try to start the search again.

v Purge the browser’s cache.
v Try a different version of Netscape, or a different browser.

Related tasks:

v “Searching the DB2 documentation” on page 539

Searching the DB2 documentation

To search DB2’s documentation, you need Netscape 6.1 or higher, or
Microsoft’s Internet Explorer 5 or higher. Ensure that your browser’s Java
support is enabled.

A pop-up search window opens when you click the search icon in the
navigation toolbar of the Information Center accessed from a browser. If you
are using the search for the first time it may take a minute or so to load into
the search window.

Restrictions:

DB2 Universal Database technical information 539

The following restrictions apply when you use the documentation search:
v Boolean searches are not supported. The boolean search qualifiers and and

or will be ignored in a search. For example, the following searches would
produce the same results:
– servlets and beans
– servlets or beans

v Wildcard searches are not supported. A search on java* will only look for
the literal string java* and would not, for example, find javadoc.

In general, you will get better search results if you search for phrases instead
of single words.

Procedure:

To search the DB2 documentation:
1. In the navigation toolbar, click Search.
2. In the top text entry field of the Search window, enter two or more terms

related to your area of interest and click Search. A list of topics ranked by
accuracy displays in the Results field.
Entering more terms increases the precision of your query while reducing
the number of topics returned from your query.

3. In the Results field, click the title of the topic you want to read. The topic
displays in the content frame.

Note: When you perform a search, the first result is automatically loaded into
your browser frame. To view the contents of other search results, click
on the result in results lists.

Related tasks:

v “Troubleshooting DB2 documentation search with Netscape 4.x” on page
538

Online DB2 troubleshooting information

With the release of DB2® UDB Version 8, there will no longer be a
Troubleshooting Guide. The troubleshooting information once contained in this
guide has been integrated into the DB2 publications. By doing this, we are
able to deliver the most up-to-date information possible. To find information
on the troubleshooting utilities and functions of DB2, access the DB2
Information Center from any of the tools.

Refer to the DB2 Online Support site if you are experiencing problems and
want help finding possible causes and solutions. The support site contains a

540 Programming Client Applications

large, constantly updated database of DB2 publications, TechNotes, APAR
(product problem) records, FixPaks, and other resources. You can use the
support site to search through this knowledge base and find possible solutions
to your problems.

Access the Online Support site at
www.ibm.com/software/data/db2/udb/winos2unix/support, or by clicking
the Online Support button in the DB2 Information Center. Frequently
changing information, such as the listing of internal DB2 error codes, is now
also available from this site.

Related concepts:

v “DB2 Information Center for topics” on page 543

Related tasks:

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 534

Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features in DB2® Universal Database Version 8:
v DB2 allows you to operate all features using the keyboard instead of the

mouse. See “Keyboard Input and Navigation”.
v DB2 enables you customize the size and color of your fonts. See “Accessible

Display” on page 542.
v DB2 allows you to receive either visual or audio alert cues. See “Alternative

Alert Cues” on page 542.
v DB2 supports accessibility applications that use the Java™ Accessibility API.

See “Compatibility with Assistive Technologies” on page 542.
v DB2 comes with documentation that is provided in an accessible format.

See “Accessible Documentation” on page 542.

Keyboard Input and Navigation

Keyboard Input
You can operate the DB2 Tools using only the keyboard. You can use keys or
key combinations to perform most operations that can also be done using a
mouse.

DB2 Universal Database technical information 541

http://www.ibm.com/software/data/db2/udb/winos2unix/support

Keyboard Focus
In UNIX-based systems, the position of the keyboard focus is highlighted,
indicating which area of the window is active and where your keystrokes will
have an effect.

Accessible Display
The DB2 Tools have features that enhance the user interface and improve
accessibility for users with low vision. These accessibility enhancements
include support for customizable font properties.

Font Settings
The DB2 Tools allow you to select the color, size, and font for the text in
menus and dialog windows, using the Tools Settings notebook.

Non-dependence on Color
You do not need to distinguish between colors in order to use any of the
functions in this product.

Alternative Alert Cues
You can specify whether you want to receive alerts through audio or visual
cues, using the Tools Settings notebook.

Compatibility with Assistive Technologies
The DB2 Tools interface supports the Java Accessibility API enabling use by
screen readers and other assistive technologies used by people with
disabilities.

Accessible Documentation
Documentation for the DB2 family of products is available in HTML format.
This allows you to view documentation according to the display preferences
set in your browser. It also allows you to use screen readers and other
assistive technologies.

DB2 tutorials

The DB2® tutorials help you learn about various aspects of DB2 Universal
Database. The tutorials provide lessons with step-by-step instructions in the
areas of developing applications, tuning SQL query performance, working
with data warehouses, managing metadata, and developing Web services
using DB2.

Before you begin:

Before you can access these tutorials using the links below, you must install
the tutorials from the DB2 HTML Documentation CD-ROM.

542 Programming Client Applications

If you do not want to install the tutorials, you can view the HTML versions of
the tutorials directly from the DB2 HTML Documentation CD. PDF versions of
these tutorials are also available on the DB2 PDF Documentation CD.

Some tutorial lessons use sample data or code. See each individual tutorial for
a description of any prerequisites for its specific tasks.

DB2 Universal Database tutorials:

If you installed the tutorials from the DB2 HTML Documentation CD-ROM,
you can click on a tutorial title in the following list to view that tutorial.

Business Intelligence Tutorial: Introduction to the Data Warehouse Center
Perform introductory data warehousing tasks using the Data
Warehouse Center.

Business Intelligence Tutorial: Extended Lessons in Data Warehousing
Perform advanced data warehousing tasks using the Data Warehouse
Center. (Not provided on CD. You can download this tutorial from the
Downloads section of the Business Intelligence Solutions Web site at
http://www.ibm.com/software/data/bi/.)

Development Center Tutorial for Video Online using Microsoft® Visual Basic
Build various components of an application using the Development
Center Add-in for Microsoft Visual Basic.

Information Catalog Center Tutorial
Create and manage an information catalog to locate and use metadata
using the Information Catalog Center.

Video Central for e-business Tutorial
Develop and deploy an advanced DB2 Web Services application using
WebSphere® products.

Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance
using Visual Explain.

DB2 Information Center for topics

The DB2® Information Center gives you access to all of the information you
need to take full advantage of DB2 Universal Database™ and DB2 Connect™

in your business. The DB2 Information Center also documents major DB2
features and components including replication, data warehousing, the
Information Catalog Center, Life Sciences Data Connect, and DB2 extenders.

The DB2 Information Center accessed from a browser has the following
features:

DB2 Universal Database technical information 543

../tutr/db2tu/index.htm
../tutr/db2td/index.htm
../tutr/db2ai/index.htm
../tutr/db2tw/index.htm
../tutr/db2tv/index.htm

Regularly updated documentation
Keep your topics up-to-date by downloading updated HTML.

Search
Search all of the topics installed on your workstation by clicking
Search in the navigation toolbar.

Integrated navigation tree
Locate any topic in the DB2 library from a single navigation tree. The
navigation tree is organized by information type as follows:
v Tasks provide step-by-step instructions on how to complete a goal.
v Concepts provide an overview of a subject.
v Reference topics provide detailed information about a subject,

including statement and command syntax, message help,
requirements.

Master index
Access the information in topics and tools help from one master
index. The index is organized in alphabetical order by index term.

Master glossary
The master glossary defines terms used in the DB2 Information
Center. The glossary is organized in alphabetical order by glossary
term.

Related tasks:

v “Finding topics by accessing the DB2 Information Center from a browser”
on page 532

v “Finding product information by accessing the DB2 Information Center
from the administration tools” on page 534

v “Updating the HTML documentation installed on your machine” on page
536

544 Programming Client Applications

Notices

IBM may not offer the products, services, or features discussed in this
document in all countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country/region or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make

© Copyright IBM Corp. 1993-2002 545

improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Canada Limited
Office of the Lab Director
8200 Warden Avenue
Markham, Ontario
L6G 1C7
CANADA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

546 Programming Client Applications

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source
language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM
Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_. All
rights reserved.

Notices 547

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both.

ACF/VTAM
AISPO
AIX
AIX/6000
AIXwindows
AnyNet
APPN
AS/400
BookManager
CICS
C Set++
C/370
DATABASE 2
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
DB2 Connect
DB2 Extenders
DB2 OLAP Server
DB2 Universal Database
Distributed Relational

Database Architecture
DRDA
eNetwork
eServer
Extended Services
FFST
First Failure Support Technology
IBM
IMS

IMS/ESA
iSeries
LAN Distance
MVS
MVS/ESA
MVS/XA
Net.Data
OS/390
OS/400
PowerPC
pSeries
QBIC
QMF
RACF
RISC System/6000
RS/6000
S/370
SP
SQL/DS
SQL/400
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WebExplorer
WIN-OS/2
z/OS
zSeries

The following terms are trademarks or registered trademarks of other
companies:

Microsoft, Windows, and Windows NT are trademarks or registered
trademarks of Microsoft Corporation.

Java and all Java-based trademarks and logos, and Solaris are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

548 Programming Client Applications

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States,
other countries, or both.

UNIX is a registered trademark in the United States, other countries or both
and is licensed exclusively through X/Open Company Limited.

Other company, product, or service names may be trademarks or service
marks of others.

Notices 549

����

Part Number: CT17TNA

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-4826-00

(1
P)

P/
N:

CT
17

TN
A

	Contents
	About This Book
	Part 1. Introduction
	Chapter 1. Overview of Supported Programming Interfaces
	DB2 Developer’s Edition
	DB2 Developer's Edition Products
	Instructions for Installing DB2 Developer’s Edition Products

	DB2 Universal Database Tools for Developing Applications
	Supported Programming Interfaces
	DB2 Supported Programming Interfaces
	DB2 Application Programming Interfaces
	Embedded SQL
	DB2 Call Level Interface
	DB2 CLI versus Embedded Dynamic SQL
	Java Database Connectivity (JDBC)
	Embedded SQL for Java (SQLj)
	ActiveX Data Objects and Remote Data Objects
	Perl DBI
	ODBC End-User Tools

	Web Applications
	Tools for Building Web Applications
	WebSphere Studio
	XML Extender
	MQSeries Enablement
	Net.Data

	Programming Features
	DB2 Programming Features
	DB2 Stored Procedures
	DB2 User-Defined Functions and Methods
	Development Center
	User-Defined Types (UDTs) and Large Objects (LOBs)
	OLE Automation Routines
	OLE DB Table Functions
	DB2 Triggers

	Chapter 2. Coding a DB2 Application
	Prerequisites for Programming
	DB2 Application Coding Overview
	Programming a Standalone Application
	Creating the Declaration Section of a Standalone Application
	Declaring Variables That Interact with the Database Manager
	Declaring Variables That Represent SQL Objects
	Declaring Host Variables with the db2dclgn Declaration Generator
	Relating Host Variables to an SQL Statement
	Declaring the SQLCA for Error Handling
	Error Handling Using the WHENEVER Statement
	Adding Non-Executable Statements to an Application
	Connecting an Application to a Database
	Coding Transactions
	Ending a Transaction with the COMMIT Statement
	Ending a Transaction with the ROLLBACK Statement
	Ending an Application Program
	Implicit Ending of a Transaction in a Standalone Application
	Application Pseudocode Framework
	Facilities for Prototyping SQL Statements
	Administrative APIs in Embedded SQL or DB2 CLI Programs
	Definition of FIPS 127-2 and ISO/ANS SQL92

	Controlling Data Values and Relationships
	Data Value Control
	Data Value Control Using Data Types
	Data Value Control Using Unique Constraints
	Data Value Control Using Table Check Constraints
	Data Value Control Using Referential Integrity Constraints
	Data Value Control Using Views with Check Option
	Data Value Control Using Application Logic and Program Variable Types
	Data Relationship Control
	Data Relationship Control Using Referential Integrity Constraints
	Data Relationship Control Using Triggers
	Data Relationship Control Using Before Triggers
	Data Relationship Control Using After Triggers
	Data Relationship Control Using Application Logic
	Application Logic at the Server

	Authorization Considerations for SQL and APIs
	Authorization Considerations for Embedded SQL
	Authorization Considerations for Dynamic SQL
	Authorization Considerations for Static SQL
	Authorization Considerations for APIs

	Testing the Application
	Setting up the Test Environment for an Application
	Setting up a Testing Environment
	Creating Test Tables and Views
	Generating Test Data

	Debugging and Optimizing an Application

	IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
	The IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
	IBM DB2 Universal Database Project Add-In for Microsoft Visual C++ Terminology
	Activating the IBM DB2 Universal Database Project Add-In for Microsoft Visual C++
	Activating the IBM DB2 Universal Database Tools Add-In for Microsoft Visual C++

	Part 2. Embedded SQL
	Chapter 3. Embedded SQL Overview
	Embedding SQL Statements in a Host Language
	Source File Creation and Preparation
	Packages, Binding, and Embedded SQL
	Package Creation for Embedded SQL
	Precompilation of Source Files Containing Embedded SQL
	Source File Requirements for Embedded SQL Applications
	Compilation and Linkage of Source Files Containing Embedded SQL
	Package Creation Using the BIND Command
	Package Versioning
	Effect of Special Registers on Bound Dynamic SQL
	Resolution of Unqualified Table Names
	Additional Considerations when Binding
	Advantages of Deferred Binding
	Bind File Contents
	Application, Bind File, and Package Relationships
	Precompiler-Generated Timestamps
	Package Rebinding

	Chapter 4. Writing Static SQL Programs
	Characteristics and Reasons for Using Static SQL
	Advantages of Static SQL
	Example Static SQL Program
	Data Retrieval in Static SQL Programs
	Host Variables in Static SQL Programs
	Host Variables in Static SQL
	Declaring Host Variables in Static SQL Programs
	Referencing Host Variables in Static SQL Programs

	Indicator Variables in Static SQL Programs
	Including Indicator Variables in Static SQL Programs
	Data Types for Indicator Variables in Static SQL Programs
	Example of an Indicator Variable in a Static SQL Program

	Selecting Multiple Rows Using a Cursor
	Selecting Multiple Rows Using a Cursor
	Declaring and Using Cursors in Static SQL Programs
	Cursor Types and Unit of Work Considerations
	Example of a Cursor in a Static SQL Program

	Manipulating Retrieved Data
	Updating and Deleting Retrieved Data in Static SQL Programs
	Cursor Types
	Example of a Fetch in a Static SQL Program

	Scrolling Through and Manipulating Retrieved Data
	Scrolling Through Previously Retrieved Data
	Keeping a Copy of the Data
	Retrieving Data a Second Time
	Row Order Differences Between the First and Second Result Table
	Positioning a Cursor at the End of a Table
	Updating Previously Retrieved Data
	Example of an Insert, Update, and Delete in a Static SQL Program

	Diagnostic Information
	Return Codes
	Error Information in the SQLCODE, SQLSTATE, and SQLWARN Fields
	Token Truncation in the SQLCA Structure
	Exception, Signal, and Interrupt Handler Considerations
	Exit List Routine Considerations
	Error Message Retrieval in an Application

	Chapter 5. Writing Dynamic SQL Programs
	Characteristics and Reasons for Using Dynamic SQL
	Reasons for Using Dynamic SQL
	Dynamic SQL Support Statements
	Dynamic SQL Versus Static SQL

	Cursors in Dynamic SQL Programs
	Declaring and Using Cursors in Dynamic SQL Programs
	Example of a Cursor in a Dynamic SQL Program

	Effects of DYNAMICRULES on Dynamic SQL
	The SQLDA in Dynamic SQL Programs
	Host Variables and the SQLDA in Dynamic SQL Programs
	Declaring the SQLDA Structure in a Dynamic SQL Program
	Preparing a Statement in Dynamic SQL Using the Minimum SQLDA Structure
	Allocating an SQLDA with Sufficient SQLVAR Entries for a Dynamic SQL Program
	Describing a SELECT Statement in a Dynamic SQL Program
	Acquiring Storage to Hold a Row
	Processing the Cursor in a Dynamic SQL Program
	Allocating an SQLDA Structure for a Dynamic SQL Program
	Transferring Data in a Dynamic SQL Program Using an SQLDA Structure
	Processing Interactive SQL Statements in Dynamic SQL Programs
	Determination of Statement Type in Dynamic SQL Programs
	Processing Variable-List SELECT Statements in Dynamic SQL Programs

	Saving SQL Requests from End Users
	Parameter Markers in Dynamic SQL Programs
	Providing Variable Input to Dynamic SQL Using Parameter Markers
	Example of Parameter Markers in a Dynamic SQL Program

	DB2 Call Level Interface (CLI) Compared to Dynamic SQL
	DB2 Call Level Interface (CLI) versus Embedded Dynamic SQL
	Advantages of DB2 CLI over Embedded SQL
	When to Use DB2 CLI or Embedded SQL

	Chapter 6. Programming in C and C++
	Programming Considerations for C/C++
	Trigraph Sequences for C and C++
	Input and Output Files for C and C++
	Include Files
	Include Files for C and C++
	Include Files in C and C++

	Embedded SQL Statements in C and C++
	Host Variables in C and C++
	Host Variables in C and C++
	Host Variable Names in C and C++
	Host Variable Declarations in C and C++
	Syntax for Numeric Host Variables in C and C++
	Syntax for Fixed and Null-Terminated Character Host Variables in C and C++
	Syntax for Variable-Length Character Host Variables in C or C++
	Indicator Variables in C and C++
	Graphic Host Variables in C and C++
	Syntax for Graphic Declaration of Single-Graphic and Null-Terminated Graphic Forms in C and C++
	Syntax for Graphic Declaration of VARGRAPHIC Structured Form in C or C++
	Syntax for Large Object (LOB) Host Variables in C or C++
	Syntax for Large Object (LOB) Locator Host Variables in C or C++
	Syntax for File Reference Host Variable Declarations in C or C++
	Host Variable Initialization in C and C++
	C Macro Expansion
	Host Structure Support in C and C++
	Indicator Tables in C and C++
	Null-Terminated Strings in C and C++
	Host Variables Used as Pointer Data Types in C and C++
	Class Data Members Used as Host Variables in C and C++
	Qualification and Member Operators in C and C++
	Multi-Byte Character Encoding in C and C++
	wchar_t and sqldbchar Data Types in C and C++
	WCHARTYPE Precompiler Option in C and C++
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations in C and C++
	SQL Declare Section with Host Variables for C and C++

	Data Type Considerations for C and C++
	Supported SQL Data Types in C and C++
	FOR BIT DATA in C and C++
	C and C++ Data Types for Procedures, Functions, and Methods

	SQLSTATE and SQLCODE Variables in C and C++

	Chapter 7. Multiple-Thread Database Access for C and C++ Applications
	Purpose of Multiple-Thread Database Access
	Recommendations for Using Multiple Threads
	Code Page and Country/Region Code Considerations for Multithreaded UNIX Applications
	Troubleshooting Multithreaded Applications
	Potential Problems with Multiple Threads
	Deadlock Prevention for Multiple Contexts

	Chapter 8. Programming in COBOL
	Programming Considerations for COBOL
	Language Restrictions in COBOL
	Multiple-Thread Database Access in COBOL
	Input and Output Files for COBOL
	Include Files for COBOL
	Embedded SQL Statements in COBOL
	Host Variables in COBOL
	Host Variables in COBOL
	Host Variable Names in COBOL
	Host Variable Declarations in COBOL
	Syntax for Numeric Host Variables in COBOL
	Syntax for Fixed-Length Character Host Variables in COBOL
	Syntax for Fixed-Length Graphic Host Variables in COBOL
	Indicator Variables in COBOL
	Syntax for LOB Host Variables in COBOL
	Syntax for LOB Locator Host Variables in COBOL
	Syntax for File Reference Host Variables in COBOL
	Host Structure Support in COBOL
	Indicator Tables in COBOL
	REDEFINES in COBOL Group Data Items
	SQL Declare Section with Host Variables for COBOL

	Data Type Considerations for COBOL
	Supported SQL Data Types in COBOL
	BINARY/COMP-4 COBOL Data Types
	FOR BIT DATA in COBOL

	SQLSTATE and SQLCODE Variables in COBOL
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for COBOL
	Object Oriented COBOL

	Chapter 9. Programming in FORTRAN
	Programming Considerations for FORTRAN
	Language Restrictions in FORTRAN
	Call by Reference in FORTRAN
	Debug and Comment Lines in FORTRAN
	Precompilation Considerations for FORTRAN
	Multiple-Thread Database Access in FORTRAN

	Input and Output Files for FORTRAN
	Include Files
	Include Files for FORTRAN
	Include Files in FORTRAN Applications

	Embedded SQL Statements in FORTRAN
	Host Variables in FORTRAN
	Host Variables in FORTRAN
	Host Variable Names in FORTRAN
	Host Variable Declarations in FORTRAN
	Syntax for Numeric Host Variables in FORTRAN
	Syntax for Character Host Variables in FORTRAN
	Indicator Variables in FORTRAN
	Syntax for Large Object (LOB) Host Variables in FORTRAN
	Syntax for Large Object (LOB) Locator Host Variables in FORTRAN
	Syntax for File Reference Host Variables in FORTRAN
	SQL Declare Section with Host Variables for FORTRAN

	Supported SQL Data Types in FORTRAN
	Considerations for Multi-Byte Character Sets in FORTRAN
	Japanese or Traditional Chinese EUC, and UCS-2 Considerations for FORTRAN
	SQLSTATE and SQLCODE Variables in FORTRAN

	Part 3. Java
	Chapter 10. Programming in Java
	Programming Considerations for Java
	JDBC and SQLj
	Comparison of SQLj to JDBC
	JDBC and SQLj Interoperability
	Session Sharing Between JDBC and SQLj

	Advantages of Java over Other Languages
	SQL Security in Java
	Connection Resource Management in Java
	Source and Output Files for Java
	Java Class Libraries
	Where to Put Java Classes
	Updating Java Classes for Runtime
	Java Packages
	Host Variables in Java
	Supported SQL Data Types in Java
	Java Enablement Components
	Application and Applet Support
	Application Support in Java with the Type 2 Driver
	Application and Applet Support in Java with the Type 4 Driver
	Applet Support in Java Using the Type 3 Driver

	JDBC Programming
	Coding JDBC Applications and Applets
	JDBC Specification
	Example of a JDBC Program
	Distribution of JDBC Applications Using the Type 2 Driver
	Distribution and Running of Type 4 Driver JDBC Applets
	Exceptions Caused by Mismatched db2java.zip Files When Using the JDBC Type 3 Driver
	JDBC 2.1
	JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 2 Driver
	JDBC 2.1 Core API Restrictions by the DB2 JDBC Type 4 Driver
	JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 2 Driver
	JDBC 2.1 Optional Package API Support by the DB2 JDBC Type 4 Driver

	SQLj Programming
	SQLj Programming
	DB2 Support for SQLj
	DB2 Restrictions on SQLj
	Embedded SQL Statements in Java
	Iterator Declarations and Behavior in SQLj
	Example of Iterators in an SQLj Program
	Calls to Routines in SQLj
	Example of Compiling and Running an SQLj Program
	SQLj Translator Options

	Troubleshooting Java Applications
	Trace Facilities in Java
	CLI/ODBC/JDBC Trace Facility
	CLI and JDBC Trace Files
	SQLSTATE and SQLCODE Values in Java

	Chapter 11. Java Applications Using WebSphere Application Servers
	Web Services
	Web Services Architecture
	Accessing Data
	DB2 Data Access Through Web Services
	DB2 Data Access Using XML-Based Queries
	DB2 Data Access Using SQL-Based Queries
	Document Access Definition Extension File

	Java 2 Platform Enterprise Edition
	Java 2 Platform Enterprise Edition (J2EE) Overview
	Java 2 Platform Enterprise Edition
	Java 2 Platform Enterprise Edition Containers
	Java 2 Platform Enterprise Edition Server
	Java 2 Enterprise Edition Database Requirements
	Java Naming and Directory Interface (JNDI)
	Java Transaction Management
	Enterprise Java Beans

	WebSphere
	Connections to Enterprise Data
	WebSphere Connection Pooling and Data Sources
	Parameters for Tuning WebSphere Connection Pools
	Benefits of WebSphere Connection Pooling
	Statement Caching in WebSphere

	Part 4. Other Programming Interfaces
	Chapter 12. Programming in Perl
	Programming Considerations for Perl
	Perl Restrictions
	Multiple-Thread Database Access in Perl
	Database Connections in Perl
	Fetching Results in Perl
	Parameter Markers in Perl
	SQLSTATE and SQLCODE Variables in Perl
	Example of a Perl Program

	Chapter 13. Programming in REXX
	Programming Considerations for REXX
	Language Restrictions for REXX
	Language Restrictions for REXX
	Registering SQLEXEC, SQLDBS and SQLDB2 in REXX
	Multiple-Thread Database Access in REXX
	Japanese or Traditional Chinese EUC Considerations for REXX

	Embedded SQL in REXX Applications
	Host Variables in REXX
	Host Variables in REXX
	Host Variable Names in REXX
	Host Variable References in REXX
	Indicator Variables in REXX
	Predefined REXX Variables
	LOB Host Variables in REXX
	Syntax for LOB Locator Declarations in REXX
	Syntax for LOB File Reference Declarations in REXX
	LOB Host Variable Clearing in REXX
	Cursors in REXX

	Supported SQL Data Types in REXX
	Execution Requirements for REXX
	Building and Running REXX Applications
	Bind Files for REXX

	API Syntax for REXX
	Calling Stored Procedures from REXX
	Stored Procedures in REXX
	Stored Procedure Calls in REXX
	Client Considerations for Calling Stored Procedures in REXX
	Server Considerations for Calling Stored Procedures in REXX
	Retrieval of Precision and SCALE Values from SQLDA Decimal Fields

	Chapter 14. Writing Applications Using the IBM OLE DB Provider for DB2 Servers
	Purpose of the IBM OLE DB Provider for DB2
	Application Types Supported by the IBM OLE DB Provider for DB2
	OLE DB Services
	Thread Model Supported by IBM OLE DB Provider
	Large Object Manipulation with the IBM OLE DB Provider
	Schema Rowsets Supported by the IBM OLE DB Provider
	OLE DB Services Automatically Enabled by IBM OLE DB Provider

	Data Services
	Supported Cursor Modes for the IBM OLE DB Provider
	Data Type Mappings between DB2 and OLE DB
	Data Conversion for Setting Data from OLE DB Types to DB2 Types
	Data Conversion for Setting Data from DB2 Types to OLE DB Types

	IBM OLE DB Provider Restrictions
	IBM OLE DB Provider Support for OLE DB Components and Interfaces
	IBM OLE DB Provider Support for OLE DB Properties
	Connections to Data Sources Using IBM OLE DB Provider
	ADO Applications
	ADO Connection String Keywords
	Connections to Data Sources with Visual Basic ADO Applications
	Updatable Scrollable Cursors in ADO Applications
	Limitations for ADO Applications
	IBM OLE DB Provider Support for ADO Methods and Properties

	C and C++ Applications
	Compilation and Linking of C/C++ Applications and the IBM OLE DB Provider
	Connections to Data Sources in C/C++ Applications using the IBM OLE DB Provider
	Updatable Scrollable Cursors in ATL Applications and the IBM OLE DB Provider

	MTS and COM+ Distributed Transactions
	MTS and COM+ Distributed Transaction Support and the IBM OLE DB Provider
	Enablement of MTS Support in DB2 Universal Database for C/C++ Applications

	Part 5. General DB2 Application Concepts
	Chapter 15. National Language Support
	Collating Sequence Overview
	Collating Sequences
	Character Comparisons Based on Collating Sequences
	Case Independent Comparisons Using the TRANSLATE Function
	Differences Between EBCDIC and ASCII Collating Sequence Sort Orders
	Collating Sequence Specified when Database Is Created
	Sample Collating Sequences

	Code Pages and Locales
	Derivation of Code Page Values
	Derivation of Locales in Application Programs
	How DB2 Derives Locales

	Application Considerations
	National Language Support and Application Development Considerations
	National Language Support and SQL Statements
	Remote Stored Procedures and UDFs
	Package Name Considerations in Mixed Code Page Environments
	Active Code Page for Precompilation and Binding
	Active Code Page for Application Execution
	Character Conversion Between Different Code Pages
	When Code Page Conversion Occurs
	Character Substitutions During Code Page Conversions
	Supported Code Page Conversions
	Code Page Conversion Expansion Factor

	DBCS Character Sets
	Extended UNIX Code (EUC) Character Sets
	CLI, ODBC, JDBC, and SQLj Programs in a DBCS Environment
	Considerations for Japanese and Traditional Chinese EUC and UCS-2 Code Sets
	Japanese and Traditional Chinese EUC and UCS-2 Code Set Considerations
	Mixed EUC and Double-Byte Client and Database Considerations
	Character Conversion Considerations for Traditional Chinese Users
	Graphic Data in Japanese or Traditional Chinese EUC Applications
	Application Development in Unequal Code Page Situations
	Client-Based Parameter Validation in a Mixed Code Set Environment
	DESCRIBE Statement in Mixed Code Set Environments
	Fixed-Length and Variable-Length Data in Mixed Code Set Environments
	Code Page Conversion String-Length Overflow in Mixed Code Set Environments
	Applications Connected to Unicode Databases

	Chapter 16. Managing Transactions
	Remote Unit of Work
	Multisite Update Considerations
	Multisite Update
	When to Use Multisite Update
	SQL Statements in Multisite Update Applications
	Precompilation of Multisite Update Applications
	Configuration Parameter Considerations for Multisite Update Applications

	Accessing Host, AS/400, or iSeries Servers
	Concurrent Transactions
	Concurrent Transactions
	Potential Problems with Concurrent Transactions
	Deadlock Prevention for Concurrent Transactions

	X/Open XA Interface Programming Considerations
	Application Linkage and the X/Open XA Interface

	Chapter 17. Programming Considerations for Partitioned Database Environments
	FOR READ ONLY Cursors in a Partitioned Database Environment
	Directed DSS and Local Bypass
	Directed DSS and Local Bypass in Partitioned Database Environments
	Directed DSS in Partitioned Database Environments
	Local Bypass in Partitioned Database Environments

	Buffered Inserts
	Buffered Inserts in Partitioned Database Environments
	Considerations for Using Buffered Inserts
	Restrictions on Using Buffered Inserts

	Example of Extracting a Large Volume of Data in a Partitioned Database Environment
	Creating a Simulated Partitioned Database Environment
	Troubleshooting
	Error-Handling Considerations in Partitioned Database Environments
	Severe Errors in Partitioned Database Environments
	Merged Multiple SQLCA Structures
	Partition That Returns the Error
	Looping or Suspended Applications

	Chapter 18. Common DB2 Application Techniques
	Generated Columns
	Identity Columns
	Sequential Values and Sequence Objects
	Generation of Sequential Values
	Management of Sequence Behavior
	Application Performance and Sequence Objects
	Sequence Objects Compared to Identity Columns

	Declared Temporary Tables and Application Performance
	Savepoints and Transactions
	Transaction Management with Savepoints
	Application Savepoints Compared to Compound SQL Blocks
	SQL Statements for Creating and Controlling Savepoints
	Restrictions on Savepoint Usage
	Savepoints and Data Definition Language (DDL)
	Savepoints and Buffered Inserts
	Savepoints and Cursor Blocking
	Savepoints and XA-Compliant Transaction Managers

	Transmission of Large Volumes of Data Across a Network

	Part 6. Appendixes
	Appendix A. Supported SQL Statements
	Appendix B. Programming in a Host or iSeries Environment
	Applications in Host or iSeries Environments
	Data Definition Language in Host and iSeries Environments
	Data Manipulation Language in Host and iSeries Environments
	Data Control Language in Host and iSeries Environments
	Database Connection Management with DB2 Connect
	Processing of Interrupt Requests
	Package Attributes, PREP, and BIND
	Package Attribute Differences among IBM Relational Database Systems
	CNULREQD BIND Option for C Null-Terminated Strings
	Standalone SQLCODE and SQLSTATE Variables
	Isolation Levels Supported by DB2 Connect

	User-Defined Sort Orders
	Referential Integrity Differences among IBM Relational Database Systems
	Locking and Application Portability
	SQLCODE and SQLSTATE Differences among IBM Relational Database Systems
	System Catalog Differences among IBM Relational Database Systems
	Numeric Conversion Overflows on Retrieval Assignments
	Stored Procedures in Host or iSeries Environments
	DB2 Connect Support for Compound SQL
	Multisite Update with DB2 Connect
	Host and iSeries Server SQL Statements Supported by DB2 Connect
	Host and iSeries Server SQL Statements Rejected by DB2 Connect

	Appendix C. Simulation of EBCDIC Binary Collation
	Index
	DB2 Universal Database technical information
	Overview of DB2 Universal Database technical information
	Categories of DB2 technical information
	Core DB2 information
	Administration information
	Application development information
	Business intelligence information
	DB2 Connect information
	Getting started information
	Tutorial information
	Optional component information
	Release notes

	Printing DB2 books from PDF files
	Ordering printed DB2 books
	Accessing online help
	Finding topics by accessing the DB2 Information Center from a browser
	Finding product information by accessing the DB2 Information Center from the administration tools
	Viewing technical documentation online directly from the DB2 HTML Documentation CD
	Updating the HTML documentation installed on your machine
	Copying files from the DB2 HTML Documentation CD to a Web Server
	Troubleshooting DB2 documentation search with Netscape 4.x
	Searching the DB2 documentation
	Online DB2 troubleshooting information
	Accessibility
	Keyboard Input and Navigation
	Keyboard Input
	Keyboard Focus

	Accessible Display
	Font Settings
	Non-dependence on Color

	Alternative Alert Cues
	Compatibility with Assistive Technologies
	Accessible Documentation

	DB2 tutorials
	DB2 Information Center for topics

	Notices
	Trademarks

